
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

Jun Tao Luo 1 Yumin Chen 1

Summary

For our course project, we investigated the perfor-

mance of a concurrent lock-free priority queue im-

plementation based on multi-dimensional linked

lists (MDList), which guarantees a O(logN)

worst-case for insertion and deletion operations.

We augmented the implementation to support du-

plicate priorities which allowed us to benchmark

its performance on a parallelized Dijkstra’s Sin-

gle Source Shortest Path (SSSP) algorithm, which

is a more realistic workload, in addition to mi-

crobenchmarks. We demonstrated that this imple-

mentation of a concurrent lock-free priority queue

scales well to high numbers of threads compared

to a naive lock-based implementation as tested

using OpenMP on GHC machines at CMU and

Bridges2 machines at PSC. In our experiment us-

ing a parallel SSSP benchmark, we achieved up to

100% of speedup improvement compared to the

coarse-grained priority queue with a global lock

in proper high concurrent situation.

1Carnegie Mellon University, Pittsburgh, USA. Correspon-
dence to: , Jun Tao Luo <jtluo@andrew.cmu.edu>, Yumin Chen
<yuminc@adnrew.cmu.edu>.

1. Background

To put our newly gained knowledge from this course into

practice, we decided to explore the implementation and

performance of lock-free data structures. While there have

been many implementation of lock-free trees, queues and

lists in past years we did not find any implementations of

priority queues so we felt this underexplored topic would be

a worthwhile subject.

1.1. Priority Queues

Scalable concurrent priority queues, which are pivotal to top-

ics such as the realization of parallelizing search algorithms,

priority task scheduling and discrete event simulation, has

been a research topic for many years (Zhang & Dechev,

2016). The two main operations on priority queues are

Insert, which inserts an entry consisting of a priority and

an optional value into the data structure, and DeleteMin,

which removes the entry with the highest priority from the

data structure. In sequential implementations, this can be

achieved with binary search trees, binary min heaps, Fi-

bonacci heaps and other similar approaches. However, these

approaches do not transfer well to concurrent scenarios.

Particularly challenging is the necessity for maintaining a

consistent global data structure and ensuring all processors

agree on a highest priority entry under sequential consis-

tency.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

1.2. Single Source Shortest Path

To contextualize the use of a concurrent priority queue we

turned to a classical problem in computer science: single

source shortest path. This approach is used a large variety

of planning and optimization problems and is formulated as

follows:

Definition 1.1. Given a graph G(V,E), and a starting node

v, compute the length of the shortest path between v and all

other nodes.

For the purpose of this project, we restrict this problem to

undirected edges with positive weights, which can be effi-

ciently solved using Dijkstra’s algorithm, which internally

uses a priority queue to track which nodes to visit succes-

sively to update their distances. The pseudocode of the

sequential version using node 0 as the source is reproduced

in Algorithm 1.

Algorithm 1 Sequential Dijkstra
Input: Nodes {vi}, Edges {eij}
Initialize visited = {}
Initialize dists[|{vi}|] = 0
Initialize pq = PriorityQueue
pq.insert(0, v0)
while pq not empty and |visited| < |{vi}| do

dist, v = pq.DeleteMin()
visited = visited ∪ v
for evj ∈ {eij} do

if vj /∈ visited and dists[v] + eij < dists[vj] then
dists[vj] = dists[v] + eij
pq.Insert(dists[vj], vj)

end if
end for

end while

1.2.1. PARALLELIZED DIJKSTRA’S ALGORITHM

To adapt the sequential Dijkstra’s algorithm to multiple

workers we use the proposed algorithm from (Tamir et al.,

2015) with a fine grained per node lock on distances and

offers, which represent requests to update the distance of a

node. We used a parallelized version of this algorithm to

evaluate the correctness of our priority queue implementa-

tion and its efficacy on a realistic workload. The algorithm

is similar to the sequential version except the while loop

is run in parallel. The pseudocode is reproduced in Figure

1.2.1.

Figure 1. Parallel Dijkstra’s Algorithm

Note that we use publishOfferNoMP since we don’t want to

rely on priority queues having mutable priorities. To fix a

livelock issue present in the given pseudocode, we modified

the algorithm to reset elements of done to false at the end

of each exploration, which occurs when all relax calls of an

iteration are completed.

2. Approach

We chose to implement a version of concurrent lock-free

priority queue based on Multi-Dimensional Linked Lists

(MDList) inspired by the ideas of (Zhang & Dechev, 2016).

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

We mainly applied the CAS technique to implement the lock-

free concurrent priority queue and provides two canonical

APIs, Insert and DeleteMin. Note that our implementation

considers smaller keys to be higher priority.

2.1. MDList Implementation

The priority of the each node on the priority queue is integer.

The priority will be firstly mapped to a high dimensional

vector using Algorithm 2 to uniquely locate the position of

the node during insertion operation. The algorithm maps

key in the range of [0, N) to vector coordinates by convert-

ing the integer key to a b-based number(b = ⌈ D
√
N⌉) and

using each digit as an entry. For example, if the dimen-

sion of the MDList D is 8, the upper bound of the key N is

232, and the given key is 1000, the result vector would be

[0, 0, 0, 0, 0, 3, E, 8], which represents the key’s location on

the MDList.

Algorithm 2 Mapping from Integer to Vector
Input: int key
Output: int[D] k
int basis← ⌈ D

√
N⌉, quotient← key, k[D]

for i ∈ (D, 0] do
k[i]← quotient mod basis
quotient← ⌊quotient÷ basis⌋

end for
return k

The structure of the MDList follows two rules: 1), we define

that the dimension of a node on the MDList is in the range

of [0, D). A node of dimension d has no more than (D - d)

children and each of the child node has a unique dimension

in the range of [d, D)[Rule 1]; 2) a non-root node of di-

mension d with a vector coordinates k = [k0, k1, ..., kD−1]

and its parent with coordinates k′ = [k′0, k
′
1, ..., k

′
D−1],

ki = k′i,∀i ∈ [0, d) ∧ kd > k′d[Rule 2].

For the insertion process, we divide it into two steps: node

Figure 2. Pointer Marking

splicing and child adoption. At most two consecutive nodes

are updated in the insertion process. Splicing involves point-

ing from the new node to the ancestor’s old child and up-

dating the ancestor’s child pointer. Child adoption occurs

when Rule 1 is violated after Step 1. If the dimension of a

node increases from d to d’, its children in the range [d, d′)

must be adopted.

For the deleteMin operation, we apply logical deletion while

maintaining a deletion stack to provide the information

about the position of the next smallest node to reduce node

traversal. Meanwhile, we also implement a rewind stack

function to synchronized the insert and deleteMin opera-

tions. The stack rewind occurs only when the insertion

threads notice the stack points to a position beyond the new

node, which allows the insertion to move forward aggres-

sively without blocking the deleteMin() operation.

We also applied the pointer marking technique in Figure 2

to mark adopted child and deleted nodes with three flags

Fadp, Fprg and Fdel.

2.1.1. DATA STRUCTURES

The structure of each node on the MDList is defined as

follows(Algorithm 3). The descriptor object records the

pending task of child adoption with information about the

parent node and the range of the child to be adopted. A

node in MDList contains a key-value pair, an array k[D] of

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

integers as the coordinate vector, an array of child pointers

and a child adoption descriptor. To implement the pointer

marking technique, we left shift the val by 1 bit and use the

last bit as a Fdel flag. The dth pointer in the child array links

to a dimension d child node. For simplicity, we allocate a

child array of size D for every node while children at higher

dimensions have less children. The version number helps

us keep track of the proper timing for deletion stack rewind.

The delete stack consists of a head pointer and an array of

nodes of length D. The pointer at index D − 1 points to

the last discarded node, and the pointer at index [0, D − 1)

points to the its parents at previous dimensions. All nodes

in the stack form a path through which the next minimum

node can be reached. The PriorityQueue object contains

constant variables to indicate the MDList’s dimension and

size, a dummy head of the priority queue and a deletion

stack.

Algorithm 3 Priority Queue Structures
struct Node

int ver
TKey key
TVal val
Node* child[D]
AdoptDesc* adesc
int k[D]

struct AdoptDesc
Node* curr
int dp, dc

struct Stack
Node* head, node[D]

class PriorityQueue
const int D,N
Node* head
Stack* stack

2.1.2. INSERT

In the Insertion operation(Algorithm 4), we firstly imple-

ment the inline function LocatePred to figure out the target

insertion location by determining the newly inserted node’s

predecessor pred and successor curr and figuring out the

new node’s dimension dp and its child’s new dimension

dc. If there are pending child adoptions tasks for the pre-

decessor and successor, we firstly finish the adoption by

calling the finishInserting() function(Algorithm 5). Then

we tried to insert the new node between pred and curr by

applying the CAS technique. The CAS will fail in two

cases: 1) another thread inserted a child into the desired

child slot; 2) the child slot has been marked as invalid by

parents. If it is the case 1, we retry the insertion from the

predecessor. Otherwise, we retry the insertion from the head

of the MDList. If the insertion into the target child slot suc-

ceed while the new node was inserted into a position before

the last known deleted node, that cannot be reached by the

subsequent deleteMin operations, we need to rewind the

deletion stack(Algorithm 6). Figure 3 briefly illustrates how

the insertion operation works. To insert a new node (2, 0, 0)

into a 3DList, we firstly locate the position to put into the

new node starting from the root node (0, 0, 0) with dimen-

sion 0. To obey Rule 2 mention in we increase the search

dimension from 0 to 1 and iterate to root node’s child node

in dimension 1 (1, 0, 2). Continually, we move the pointer

to node (1, 0, 2)’s 1-dimension child and find the current

node 2, 0, 1 that violates the Rule2. In this way, we find the

pred node (1, 0, 2) and the cur node (2, 0, 1). Then we fill

in the new node, which takes over two children (3, 0, 0) and

(2, 1, 0) from the old child (2, 0, 1). The dimension of the

old child increased from 0 to 2 because of the insertion. If

node (2, 0, 1) has children within the range of [0, 2), they

must be adopted. Figure 4 shows the scenario when we need

to rewind the stack. The newly inserted node 4 was inserted

before the last deleted node marked by the old stack, 5. We

rewind the deletion stack to point to the closest deleted node

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

before the newly inserted node, 3.

Figure 3. INSERT Operation in a 3DList

Figure 4. The Stack Rewind Scenario

2.1.3. DELETEMIN

In our implementation, we only implement the logical dele-

tion shown in Figure 5. According to the Rules define in sec-

tion 2.1, the next possible minimum will be the child node

of most recently deleted node(the last entry of the stack)

in dimension D - 1. This is because the top of the stack

stack[D - 1] has the largest key among all the marked nodes

and its smallest child should be assigned with the highest

dimension. This is our starting point of search. We traverse

the deletion stack from the top to see whether there is a

node on the stack stack.node[i] that has a unmarked child.

Notice the location of the nodes on the stack is correspond-

ing to their dimensions, we can easily get the dimensional

range of their children, [i,D). Figure 6 illustrates how the

deletion stack helps with the deleteMin(). The red mark

Algorithm 4 Concurrent Insert
Input: TKey{key}, TVal{val}
nodeStack* stack← new Stack
Node* node← new Node
node.key ← key, node.val← val
node.key[0 : D]← KEYTOCOORD(key)[0:D]
node.child[0 : D]← NIL
Node* pred← NIL
Node* curr← head
dp← 0, dc← 0
nodeStack.head = currNode
while true do
LOCATEPRED()
if dc = D then

break
end if
FINISHINSERTING(pred, pred← dp, pred← dc)
FINISHINSERTING(curr, curr← dp, curr← dc)
FILLNEWNODE()
if CAS(&pred.child[dp], curr, node) then

FINISHINSERTING(node, node← dp, node← dc)
REWINDSTACK()
break

end if
end while
inline function LOCATEPRED()
while dc < D do

while curr ̸= NIL and node.k[dc] > curr.k[dc] do
pred← curr, dp← dc
curr ← CLEARMARK(curr ←
child, Fadp|Fprg)

end while
if curr = NIL or node.k[dc] < curr.k[dc] then

break
else
nodeStack.node[dc]← curr, dc← dc + 1

end if
end while
inline function FILENEWNODE()
node.adesc← NIL
if dp ̸= dc then
node.adesc← new AdoptDesc
node.adesc.curr ← curr
node.adesc.dp← dp, node.adesc.dc← dc

end if
node.child[0 : dp]← Fadp
node.child[dp : D]← NIL
node.child[dc]← curr

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

Algorithm 5 Child Adoption
Input: Node* {n}, int {dp}, int {dc}
if n = NIL then

return
end if
AdoptDesc* ad← n.adesc
if ad = NIL or dc < ad.dp or dp > ad.dc then

return
end if
Node* child, curr ← ad.curr
int dp← ad.ap, dc← ad.dc
for i ∈ [dp, dc) do

child← FETCHANDOR(curr.child[i], Fadp)
child← CLEARMARK(child, Fadp)
CAS(&n.child[i], NIL, child)

end for
n.adesc← NIL

Algorithm 6 Rewind Deletion Stack
inline function REWINDSTACK()
Stack* prevStack ← NIL
Stack* currStack ← stack
Stack* newStack ← new Stack
repeat

if nodeStack.head.ver = prevStack.head.ver
then

if node.key ̸= currStack.node[D − 1].key then
newStack.node[0, dp] ←
nodeStack.node[0, dp]
newStack.node[dp, dc]← pred

else if prevStack = NIL then
∗newStack ← ∗currStack

else
break

end if
end if

until CAS(&stack, currStack, newStack) or
ISMARKED(node.val, Fdel)

of nodes indicates they have been logically deleted. And

the stack recorded the latest deleted stack following by its

parents at previous dimensions. So in the given 3DList and

deletion stack, we firstly reads s.node[2] = (1, 1, 3) and

examines the dimension 2 child s.node[2].child[2]. Since

the node (1, 1, 3) has no child in our example, we back-

track to s.node[1] = (1, 1, 2) and examine its dimension

1 child s.node[1].child[1] = (1, 2, 1). Because this node

is unmarked, we marked it as deleted and then update the

deletion stack to reflect the new deletion. If the node found

by the current thread is deleted by some competing thread,

we update the local copy of stack and retry the search from

the D- 1 dimension.

Figure 5. The Stack Rewind Scenario

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

Figure 6. The Stack Rewind Scenario

2.2. Extensions and Modifications

Beyond the basic implementation of the priority queue de-

scribed in (Zhang & Dechev, 2016), we needed to make a

few modifications in order to support workloads such as the

parallelized Dijkstra’s algorithm described in Section 1.2.1.

2.2.1. DUPLICATE PRIORITIES

The basic implementation of the MDList based priority

queue assumes all keys are unique integers, similar to other

previous skiplist-based algorithms referened in(Zhang &

Dechev, 2016). A side effect of this assumption is that

we cannot use 0 as a key since during initialization of the

priority queue a dummy value with that key is inserted into

the data structure. Additionally, the lack of support for

duplicate keys is also problematic for our SSSP benchmark

since the priorities represent the distances to the node stored

in the value field, which can be duplicated. In fact, we

may encounter multiple identical tuples if there are multiple

paths to the same node with identical lengths in the graph.

To support such workloads, we partition the address space

into two separate components: a key that is supplied to

the Insert operation and a unique identifier that is assigned

by the priority queue itself. For example, given a 32-bit

key space, we use 19 bits to store the keys provided by

the user and 13 bits to represent unique identifiers. The

priority queue maintains an array of 219 counters, one for

each possible key the user can specify, and we atomically

increment these values upon each insert call. The final key

is composed of the user’s key in the upper 19 bits and the

unique ID in the lower 13 bits.

While this allows us to handle duplicate keys, it requires the

user to specify how the key space is divided between IDs

and raw keys and introduces another point of synchroniza-

tion via an atomic fetch-and-increment operation. In our

implementation the user can specify the type used for keys

(e.g. uint for 32 bits or unsigned long for 64 bits) as well

as the number of bits reserved for unique IDs via template

parameters.

2.2.2. DELETEMIN RETURN VALUES

Another modification we needed to make to the priority

queue more simple to use is to return the priority, stored

value and a flag indicating whether the values retrieved

are valid instead of returning a pointer to an internal type

Node. The flag is used to determine whether DeleteMin

failed since the priority queue is empty. This required some

modification of the algorithm in the reference paper since

the value was stored as a pointer which sometimes is used

to store temporary information that is unrelated to stored

values.

2.2.3. NUMERIC VALUES

The next major modification is to allow arbitrary types for

values associated with each key. In the basic MDList im-

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

plementation, the value is stored as a void pointer. This is

inconvenient since it requires values to be stored at specific

memory locations without being overwritten throughout the

entire execution of the program. Unfortunately for integer

type values, this is not the case since often it is passed as an

argument to the Insert function which marshalls the value

via the stack, the space for which may be reused for other

arguments in subsequent calls. Since we didn’t want the

priority queue to handle allocations and memory manage-

ment for different value types, we opted for a design where

the user explicitly specifies the type to be used for values,

be it an integer type or a pointer type. This requires some

modifications to the logic since the algorithm proposed in

(Zhang & Dechev, 2016) involves a deletion flag that is co-

located with the void pointer to the value which we resolved

by reserving one bit in the value for such a flag.

2.2.4. EXCLUSION OF PHYSICAL DELETION

Our reference paper (Zhang & Dechev, 2016) specifically

disables physical deletion during its performance analysis

in order to achieve parity with behaviours observed in other

similar data structures such as TBBPQ which does not free

memory until the termination of the object. Since we wanted

to maintain functional parity with the reference paper, we

decided to also support only logical deletion in our imple-

mentation.

2.2.5. PSEUDOCODE BUGS

Throughout our implementation, we found many issues with

the pseudocode provided by the reference paper (Zhang &

Dechev, 2016) so our implementation differs from its de-

scription in several places. Though we won’t be exhaustive,

here are a few key differences:

• The loop described in the pseudocode for DeleteMin

needs to be performed for all dimensions in [0, D)

instead of (0, D) indicated.

• The FinishInserting call in DeleteMin should be im-

plemented using the current and predecessor dimen-

tions instead of d.

• When copying the stack, it needs to be a deep copy

instead of a shallow copy implied by the pseudocode

to prevent contamination of stack updates between

concurrent threads.

• The initialization of the priority queue requires the

insertion of a dummy node for the key 0. However,

to support stack rewind correctly, this node needs to

be marked as deleted, which was not clear from the

pseudocode.

2.3. Unsuccessful optimizations

We attempted a few optimizations guided by our profiling

results but either did not see any improvement or did not

have time to thoroughly test them.

2.3.1. ALLOCATION POOL

One of the bottlenecks in our Insert operation is the ad-

ditional overhead of allocating space to store metadata for

each new entry. For example, we need to allocate space for

a new Node, AdoptDesc and Stack for each new entry. This

is a significant overhead over the C++ std::priority queue

which stores a value directly without additional allocations.

This is consistent with suggestions from discussions on other

concurrent priority queue implementations which recom-

mend reusing memory via an allocation pool. We decided

to attempt a naive allocation pool where we pre-allocate a

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

fixed number of Node, AdoptDesc and Stack and use an

atomic counter to return an address in the pre-allocated pool.

However, from our testing we did not see any performance

benefit and we suspect the benefits of pre-allocating the

memory is canceled out by the overhead of maintaining an

atomic counter.

2.3.2. PHYSICAL DELETION

While we implemented physical deletion on a branch in our

repository, we did not finish completely testing it and there-

fore do not know the performance impact it may potentially

have. However, we suspect it will significantly improve

certain scenarios such as the Mixed Microbenchmarks dis-

cussed later in this report. However, for other scenarios,

the additional overhead of maintaining all the infrastruc-

ture to support physical deletion might be detrimental for

performance.

2.3.3. MISCELLANEOUS OPTIMIZATIONS

Finally we tried out a few simple optimizations and different

settings for the dimension hyperparameter to see they had

any impact on the memory pressure we observed in our

microbenchmark profiling. For example, we tried to reduce

the overhead of maintaining an atomic counter for each key

to generate unique IDs and instead use a single counter for a

bucket of keys. Also, we tried to use different types for keys

such as uints instead of longs to reduce the memory used to

store each element. Finally we tried to vary the dimension

hyperparameter, trying a setting of 4 and 16. None of these

attempts made any noticeable difference in performance

metrics indicating that these are not the bottlenecks in our

implementation.

2.4. Technologies used

We implemented the MDList based priority queue and par-

allel Dijkstra SSSP algorithm in C++14 compiled with gcc

version 11.3.0 with optimization level O3. The paralleliza-

tion is implemented using OpenMP. Benchmarking scripts

to collect performance metrics and checking correctness are

written in Python3.

For the benchmarking environments we collected data using

GHC machines at CMU with Intel(R) Core(TM) i7-9700

CPU @ 3.00GHz processor and 16 GB memory and PSC

Bridges2 nodes with AMD EPYC 7742 64-Core Processor

and 256 GB memory.

3. Experiments

As part of our experiments, we evaluated the correctness and

performance of our MDList priority queue using two ben-

chamrks: synthetic microbenchmarks and Dijkstra’s SSSP.

3.1. Microbenchmarks

For the microbenchmarks evaluating raw priority queue per-

formance on synthetic traffic, we mimicked the reference

paper (Zhang & Dechev, 2016). In the paper, the perfor-

mance is evaluated on three types of traffic: 100% Insert,

100% DeleteMin and a Mixed pattern consisting of 50%

Insert and 50% DeleteMin. For the mixed pattern, the inser-

tion and deletion operations are determined randomly for

each iteration. All traffic patterns are run using 1M iterations

in our microbenchmarks. The performance is measured by

operations per second, as was done in the reference paper.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

3.1.1. RESULTS

For full details on microbenchmark results see Appendix B.

Figure 7. Microbenchmark on GHC - 100% Insert

Figure 8. Microbenchmark on GHC - 100% Delete

Figure 9. Microbenchmark on GHC - Mixed

Figure 10. Microbenchmark on PSC - 100% Insert

Figure 11. Microbenchmark on PSC - 100% Delete

Figure 12. Microbenchmark on PSC - Mixed

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

3.1.2. DISCUSSION

In general, we see the common trend that coarse grain lock

based concurrent priority queues generally performs well

on 1 thread but quickly degrades as the number of threads

increases. This clearly illustrates the limitations of a single

lock under high contention where additional threads simply

leads to more time spent waiting for the lock to be available

and therefore a decrease in overall throughput as measured

by operations per second. This effect is observed on both

GHC and PSC machines.

In contrast, the performance of MDList concurrent queue

generally scales well to higher number of threads. For the

100% Insert scenario on PSC, we observed an increase in

performance up to 32 cores before additional cores lead to

a decrease in performance. The MDList implementation

outperforms the coarse grain lock for 16 cores or above. For

the lower thread numbers (< 8), the MDList implementation

performs poorly due to the high amount of overhead in its

implementation to compute vector coordinates, managing

flags and states, updating child pointers and tracking stack

updates. For the intermediate number of threads (8 - 32),

the overhead of MDList implementation becomes less sig-

nificant and the benefits due to lock freedom, fewer number

of nodes in each dimension and only requiring the modi-

fication of two consecutive nodes per insert becomes the

dominant effect that helps it to continue improve its perfor-

mance given more cores. Finally at extremely large number

of threads (> 32), the MDList starts to see degraded perfor-

mance and (Zhang & Dechev, 2016) suggests that this is

due to the context switching overhead as beyond 64 threads,

the executions are likely to be no longer fully concurrent

given underlying hardware limitations. We observe a similar

trend on GHC machines but due to the limited number of

cores, we do not see any performance improvement of using

MDList compared to a coarse grained lock implementation.

For the 100% Delete scenario, we see a relatively con-

stant operations per second across all number of threads

on PSC and GHC. This is expected as DeleteMin is an

inherently a sequential bottleneck of a priority queue algo-

rithm. However, we observe that the constant performance

of the MDList priority queue represents an improvement

over a coarse grained lock implementation starting at as

little as 4 threads. This is because the lock free MDList

implementation, while inherently sequential, does not suf-

fer from lock contention between threads that limits the

performance of the coarse grained lock implementation.

Finally, we observe relatively poor performance of MDList

on Mixed traffic scenarios compared to the coarse grained

lock implementation. However, this is a side effect of how

the benchmarks are constructed. We followed the reference

paper’s approach in (Zhang & Dechev, 2016) which does not

perform any physical deletion. On the other hand the coarse

grained lock implementation uses a C++ priority queue im-

plementation that performs explicit physical deletion. As a

result, the coarse grained lock implementation holds rela-

tively few number of entries in its data structure during this

benchmark compared to the MDList implementation which

holds an ever increasing number of entries. As such, the

MDList suffers from a large amount of entries and memory

pressure since it only performs logical deletion. We found

this effect too late during our analysis and profiling to in-

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

clude physical deletion in this microbenchmark and leave it

as potential future work.

3.1.3. ANALYSIS

To figure out the bottleneck of the MDList, we used VTune

to measure the timing spend on each part of the code. One

of our assumptions is that the time to create new node and

new stack takes up most of the CPU time besides the busy

time to add and delete nodes. As a result, we compare the

CPU profile of the normal MDList and MDList with an

allocator on PSC with 128 threads.

The results is shown as follows. From Figure 19 in Appendix

D, the DeleteMin and operation new uses up most of the

CPU time. To confirm our assumption that the overhead

of creating more dynamic memory cause the downgrade of

performance, we tried to preallocate the memory needed for

the MDList node and stack creation with the Allocator.

We can see from the Figure 20 in Appendix D the CPU times

for DeleteMin did decrease. However, the time taken by

inserting increases with the cost of synchronization within

the Allocator’s atomic counters.

3.2. SSSP Benchmarks

To generate the inputs to our Dijkstra’s SSSP benchmarks,

we created a script to generate a graph with 64, 256, 1024,

4096 and 8191 nodes. To reduce the size of our input files,

we then randomly generate non-zero weights for 5% of

the possible edges between all nodes. As a baseline to

compare our correctness and performance, we implemented

a sequential version of Dijkstra using a priority queue to

generate an output that consists of the distances to all nodes,

which is used to judge correctness, as well as the time to run

this sequential algorithm for all graph sizes, which is used

to judge performance.

3.2.1. PARALLELIZED SSSP

For a baseline to evaluate the performance of concurrent pri-

ority queues, we implemented a simple coarse grained lock

concurrent queue that uses a single global lock to synchro-

nize insertion and deletion operations. We evaluate its per-

formance to set a baseline speedup for the parallelized SSSP

benchmark. The performance is measured by its speedup

compared to the sequential Dijkstra SSSP algorithm.

3.2.2. RESULTS

Note that while we ran this benchmark for all generated

graph sizes, only the 1024, 4096 and 8191 nodes scenar-

ios are presented here as the performance smaller graphs

are generally more noisy and their behaviour is similar to

the 1024 node graph. For full details on SSSP results see

Appendix A.

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

Figure 13. SSSP Benchmark on GHC - 1024 Nodes

Figure 14. SSSP Benchmark on GHC - 4096 Nodes

Figure 15. SSSP Benchmark on GHC - 8191 Nodes

Figure 16. SSSP Benchmark on PSC - 1024 Nodes

Figure 17. SSSP Benchmark on PSC - 4096 Nodes

Figure 18. SSSP Benchmark on PSC - 8191 Nodes

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

3.2.3. DISCUSSION

In general, we can see that the results on both GHC and PSC

follow the same trend suggesting that our performance is rel-

atively insensitive to machine architecture. Also, the coarse

grain lock implementation performs better (i.e. higher

speedup) than the MDList for scenarios with fewer threads

and smaller number of nodes. This is due to the relatively

high overhead of the MDList implementation. When given

smaller problem sizes and few threads, the overhead are

significant but for larger problem sizes and more threads,

the concurrency benefits begin to dwarf the overhead. Over-

all, we see that MDList outperform coarse grain lock with

for scenarios with ≥ 4 threads on GHC machines and ≥ 8

threads on PSC machines.

For coarse grain lock priority queue, we see that it scales

poorly with additional threads under the parallelized SSSP

workload. This is because it is quickly limited by the lock

contention of the coarse grain lock. For example, the beyond

2 threads, the speedup increases much more slowly or even

decrease.

For the MDList implementation we see poor speed up perfor-

mance for when the number of threads is low. This is mostly

due to the high overhead of the MDList implementation.

For example, the structure of the node on the list is much

more complicated than that on the coarse grain lock priority

queue, containing information regarding the child nodes, the

child adoption task and etc. In low concurrency situation,

the large overhead limits the overall performance. However,

when the thread number is higher, the MDList which sup-

ports concurrency without incurring higher synchronization

cost outperforms the coarse grain lock implementation. As

for the decreasing trend at the end of the graph, one factor

is that the high competition on the MDList gives rise to

more retry on CAS failure. We also notice that the larger

the number of nodes, the better the speedup performance

especially with higher thread numbers. This is because the

larger number of nodes helps better utilize the multi cores

sources.

3.2.4. ANALYSIS

One surprising results we further analyzed was the superlin-

ear speedup observed on the 8191 Nodes benchmark with

4 threads using the MDList priority queue implementation

where we observed a speed up value of 4.38. From our

profiling result, we conclude that this is mainly caused by

two factors. First we see a slight reduction in branch misses

of 0.35% compared to 1.16% in the sequential SSSP imple-

mentation. This is primarily because MDList priority queue

does not rebalance the data structure on insert or delete. In

contrast the sequential SSSP uses std::priority queue which

rebalances on insert and delete, which involves additional

branching logic that are likely to be branch-misses. Also

we see a reduction of cache miss rate from 44.49% in the

sequential implementation to 38.29% in the MDList priority

queue implementation. This is likely due to the fact that

distributing the work among more threads reduces the work-

ing set for each thread, leading to higher probability that it

will fit within the cache. This does not scale linearly with

the number of threads because due to the random access

patterns dictated by the priority queue, we can’t partition

the data required when running parallelized Dijkstra’s al-

gorithm into completely disjoint sets between the workers.

Instead this is more of a probabilistic division where each

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

worker likely examines a smaller portion of graph verticies

and edges. For detailed profiling results see Appendix C.

We also had a suspicion that the CAS loop, while lock free,

may lead to poor performance if it retries often, leading to

a lot of wasted work. To test this theory we added diagnos-

tics for successful and failed CAS counts and found that

there is significant overhead in DeleteMin. For reference,

we found that the MDList priority queue implementation

running on 8 threads for the SSSP problem with 8191 nodes

needed 36063 attempts to insert 34840 entries (a success

rate of 96.6%) and 250915 attempts to delete 34848 entries

(a success rate of 13.9%). This shows that CAS retries is a

significant bottleneck for DeleteMin.

3.3. General Discussion

One of the main hyperparameters for this data structure is

the number of dimensions. While we did not perform a

full ablation study, we used the the findings from (Zhang &

Dechev, 2016) to use a dimension of 8 given that our key

space is 32 bits. This dimension seems to have the most

stable and highest average performance across a wide range

of thread numbers from 1 to 128.

While we are excited to be able to observe tangible per-

formance improvements using a MDList based concurrent

priority queue and adapt it to solve a practical problem like

SSSP, we must clarify that the range of problems that this

approach is applicable to may be narrow. In fact, many

algorithm that uses a priority queue in its sequential version

often uses a completely different approach in parallelized

versions. This is because there is an inherent bottleneck

in maintaining consensus of minimum entry in a priority

queue. For example, more recent approaches for parallelized

SSSP algorithms completely avoids using a priority queue

(Srinivasan et al., 2018).

4. Further work

There are several avenues of exploration to further explore

the topics visited in this project.

4.1. Concurrent Memory Allocation

We briefly explored this topic as we believe that our Insert

is severely hindered due to its numerous allocations of small

portions of memory. While our naive implementation of

a memory pool did not yield any performance benefit, we

believe that there are alternative malloc implementations

that are worth evaluating such as (Evans, 2006).

4.2. Comparisons Against Alternative Implementations

We are aware of multiple other implementations of concur-

rent priority queues such as Intel’s skip list based TBBPQ

(Shavit & Lotan, 2000) and fine grain approaches such as

(Hunt et al., 1996). Thought these are worth considering,

they were evaluated as part of (Zhang & Dechev, 2016) so

we felt there’s little need to duplicate this effort.

4.3. Further Experimentation on MDList Bottlenecks

We unfortunately did not have sufficient time to use the

results of our analysis to motivate additional experiments

on optimizations to reduce the overheads and bottlenecks

of the MDList based priority queue. Given additional time

and resources, it would have been interesting to explore

whether we can improve on the existing implementation

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

using additional techniques learned in this class.

4.4. Physical Deletion

Though this feature is not required for correctness and we

chose to not implement it for benchmark consistency rea-

sons, we believe that for real workloads this will be highly

impactful since it relieves memory pressure by periodically

purging entries that have been deleted. It would be inter-

esting to see if this feature would change any of the perfor-

mance metrics we constructed.

5. Work Distribution

Yumin Chen and Jun Tao Luo divided work into roughly

equal portions and would like to share the credit equally.

Table 1. Work Assignment

TASK LUO CHEN

LITERATURE REVIEW ✓ ✓
MDLIST DATA STRUCTURES ✓
COARSE GRAINED PQ ✓
DELETEMIN ✓
BENCHMARK SCRIPTS ✓
MILESTONE REPORT ✓ ✓
INSERT ✓
CORRECTNESS CHECKS ✓
PROFILING AND ANALYSIS ✓
FINAL REPORT ✓ ✓
POSTER ✓ ✓

6. Conclusion

We are pleased that we are able to implement additional fea-

tures for a MDList based concurrent priority queue and use

it to solve SSSP problems correctly. We were also able to

demonstrate that it scales well under high contention scenar-

ios with many threads with both synthetic microbenchmarks

and more realistic workloads compared to a naive coarse

grained lock based priority queue on both GHC and PSC

hardware.

References

Evans, J. A scalable concurrent malloc (3) implementation

for freebsd. In Proc. of the bsdcan conference, ottawa,

canada, 2006.

Hunt, G. C., Michael, M. M., Parthasarathy, S., and Scott,

M. L. An efficient algorithm for concurrent priority queue

heaps. Information Processing Letters, 60(3):151–157,

1996.

Shavit, N. and Lotan, I. Skiplist-based concurrent priority

queues. In Proceedings 14th International Parallel and

Distributed Processing Symposium. IPDPS 2000, pp. 263–

268. IEEE, 2000.

Srinivasan, S., Riazi, S., Norris, B., Das, S. K., and

Bhowmick, S. A shared-memory parallel algorithm for

updating single-source shortest paths in large dynamic

networks. In 2018 IEEE 25th International Conference

on High Performance Computing (HiPC), pp. 245–254,

2018. doi: 10.1109/HiPC.2018.00035.

Tamir, O., Morrison, A., and Rinetzky, N. A heap-based con-

current priority queue with mutable priorities for faster

parallel algorithms. In OPODIS, 2015.

Zhang, D. and Dechev, D. A lock-free priority queue design

based on multi-dimensional linked lists. IEEE Transac-

tions on Parallel and Distributed Systems, 27(3):613–626,

2016. doi: 10.1109/TPDS.2015.2419651.

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

A. Detailed Parallelized SSSP Result

A.1. GHC Machines

A.1.1. GLOCK

-- Performance Table ---

Scene Name | 2 | 4 | 8

bench-64 | 8.8e-05 | 0.000187 | 0.000387

bench-256 | 0.000359 | 0.000677 | 0.000395

bench-1024 | 0.001439 | 0.001488 | 0.001765

bench-4096 | 0.015637 | 0.010914 | 0.010777

bench-8191 | 0.055649 | 0.03562 | 0.029518

-- Speedup Table ---

Scene Name | 2 | 4 | 8

bench-64 | 0.272727 | 0.128342 | 0.062016

bench-256 | 0.615599 | 0.326440 | 0.559494

bench-1024 | 1.963864 | 1.899194 | 1.601133

bench-4096 | 2.173435 | 3.113982 | 3.153568

bench-8191 | 2.694388 | 4.209433 | 5.079612

A.1.2. MDLIST

Scene Name | 2 | 4 | 8

bench-64 | 9.3e-05 | 0.000145 | 0.000241

bench-256 | 0.000481 | 0.000394 | 0.000663

bench-1024 | 0.002044 | 0.001297 | 0.001019

bench-4096 | 0.018798 | 0.01044 | 0.00682

bench-8191 | 0.116867 | 0.034208 | 0.021115

-- Speedup Table ---

Scene Name | 2 | 4 | 8

bench-64 | 0.258065 | 0.165517 | 0.099585

bench-256 | 0.459459 | 0.560914 | 0.333333

bench-1024 | 1.382583 | 2.178874 | 2.773307

bench-4096 | 1.807958 | 3.255364 | 4.983284

bench-8191 | 1.282997 | 4.383185 | 7.101113

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

A.2. PSC Machines

A.2.1. GLOCK

-- Performance Table ---

Scene Name | 2 | 4 | 8 | 16 | 32 | 64

bench-64 | 0.00038 | 0.000424 | 0.000798 | 0.000998 | 0.0029 | 0.015268

bench-256 | 0.000739 | 0.000841 | 0.001232 | 0.001479 | 0.005017 | 0.014617

bench-1024 | 0.004475 | 0.004144 | 0.00528 | 0.006038 | 0.006879 | 0.025166

bench-4096 | 0.037754 | 0.028192 | 0.023348 | 0.025711 | 0.028318 | 0.029211

bench-8191 | 0.118094 | 0.08308 | 0.066503 | 0.054562 | 0.052378 | 0.050342

-- Speedup Table ---

Scene Name | 2 | 4 | 8 | 16 | 32 | 64

bench-64 | 0.052632 | 0.047170 | 0.025063 | 0.020040 | 0.006897 | 0.001310

bench-256 | 0.441137 | 0.387634 | 0.264610 | 0.220419 | 0.064979 | 0.022303

bench-1024 | 0.934525 | 1.009170 | 0.792045 | 0.692613 | 0.607937 | 0.166177

bench-4096 | 1.643561 | 2.201014 | 2.657658 | 2.413403 | 2.191221 | 2.124234

bench-8191 | 2.194616 | 3.119535 | 3.897132 | 4.750027 | 4.948089 | 5.148206

A.2.2. MDLIST

-- Performance Table ---

Scene Name | 2 | 4 | 8 | 16 | 32 | 64

bench-64 | 0.000495 | 0.000597 | 0.000888 | 0.001161 | 0.007756 | 0.015296

bench-256 | 0.001165 | 0.00097 | 0.001062 | 0.00135 | 0.00224 | 0.014903

bench-1024 | 0.007018 | 0.004686 | 0.003832 | 0.003232 | 0.005098 | 0.020723

bench-4096 | 0.05107 | 0.031908 | 0.02054 | 0.014684 | 0.011624 | 0.01802

bench-8191 | 0.152874 | 0.087819 | 0.051448 | 0.03851 | 0.027803 | 0.028424

-- Speedup Table ---

Scene Name | 2 | 4 | 8 | 16 | 32 | 64

bench-64 | 0.040404 | 0.033501 | 0.022523 | 0.017227 | 0.002579 | 0.001308

bench-256 | 0.279828 | 0.336082 | 0.306968 | 0.241481 | 0.145536 | 0.021875

bench-1024 | 0.595896 | 0.892446 | 1.091336 | 1.293936 | 0.820322 | 0.201805

bench-4096 | 1.215019 | 1.944685 | 3.020983 | 4.225756 | 5.338180 | 3.443452

bench-8191 | 1.695324 | 2.951195 | 5.037533 | 6.729966 | 9.321692 | 9.118034

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

B. Detailed Microbenchmark Results

B.1. GHC Machines

-- Performance Table ---

Scene Name | 1 | 2 | 4 | 8

PQGLock Insert | 0.020509 | 0.0445174 | 0.0891181 | 0.149741

PQGLock Delete | 0.111597 | 0.136812 | 0.179392 | 0.265326

PQGLock Mixed | 0.031956 | 0.115131 | 0.209116 | 0.281722

PQMDList Insert | 0.827034 | 0.435831 | 0.237808 | 0.130466

PQMDList Delete | 0.144778 | 0.143114 | 0.149287 | 0.161638

PQMDList Mixed | 0.578207 | 0.345395 | 0.228541 | 0.213554

-- Ops/s Table ---

Scene Name | 1 | 2 | 4 | 8

PQGLock Insert | 48.759 MOps/s | 22.463 MOps/s | 11.221 MOps/s | 6.678 MOps/s

PQGLock Delete | 8.961 MOps/s | 7.309 MOps/s | 5.574 MOps/s | 3.769 MOps/s

PQGLock Mixed | 31.293 MOps/s | 8.686 MOps/s | 4.782 MOps/s | 3.550 MOps/s

PQMDList Insert | 1.209 MOps/s | 2.294 MOps/s | 4.205 MOps/s | 7.665 MOps/s

PQMDList Delete | 6.907 MOps/s | 6.987 MOps/s | 6.699 MOps/s | 6.187 MOps/s

PQMDList Mixed | 1.729 MOps/s | 2.895 MOps/s | 4.376 MOps/s | 4.683 MOps/s

B.2. PSC Machines

-- Performance Table ---

Scene Name | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128

PQGLock Insert | 0.0211886 | 0.0937253 | 0.0982313 | 0.125577 | 0.595807 | 0.466818 | 0.636549 | 0.75646

PQGLock Delete | 0.117585 | 0.423217 | 0.779008 | 1.56822 | 1.78209 | 2.27517 | 2.74327 | 3.58381

PQGLock Mixed | 0.0399167 | 0.221527 | 0.239356 | 0.32732 | 0.367156 | 1.00724 | 0.778583 | 0.910591

PQMDList Insert | 1.89338 | 1.2012 | 0.65312 | 0.354061 | 0.205459 | 0.181712 | 0.2348 | 0.278263

PQMDList Delete | 0.418828 | 0.552922 | 0.474337 | 0.431324 | 0.432042 | 0.418187 | 0.434104 | 0.382783

PQMDList Mixed | 1.19834 | 0.889697 | 0.659059 | 0.788896 | 0.851559 | 0.912034 | 1.00867 | 1.17951

-- Ops/s Table ---

Scene Name | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128

PQGLock Insert | 47.195 MOps/s | 10.669 MOps/s | 10.180 MOps/s | 7.963 MOps/s | 1.678 MOps/s | 2.142 MOps/s | 1.571 MOps/s | 1.321 MOps/s

PQGLock Delete | 8.504 MOps/s | 2.363 MOps/s | 1.284 MOps/s | 0.638 MOps/s | 0.561 MOps/s | 0.440 MOps/s | 0.365 MOps/s | 0.279 MOps/s

PQGLock Mixed | 25.052 MOps/s | 4.514 MOps/s | 4.178 MOps/s | 3.055 MOps/s | 2.724 MOps/s | 0.993 MOps/s | 1.284 MOps/s | 1.098 MOps/s

PQMDList Insert | 0.528 MOps/s | 0.833 MOps/s | 1.531 MOps/s | 2.824 MOps/s | 4.867 MOps/s | 5.503 MOps/s | 4.259 MOps/s | 3.593 MOps/s

PQMDList Delete | 2.388 MOps/s | 1.809 MOps/s | 2.108 MOps/s | 2.318 MOps/s | 2.315 MOps/s | 2.089 MOps/s | 2.304 MOps/s | 2.612 MOps/s

PQMDList Mixed | 0.834 MOps/s | 1.124 MOps/s | 1.517 MOps/s | 1.268 MOps/s | 1.174 MOps/s | 1.096 MOps/s | 0.991 MOps/s | 0.847 MOps/s

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

C. Superlinear Speedup Profiling Results

C.1. Sequential Dijkstra

jtluo@ghc48:˜/618Project$ perf stat ./dijk-release \

-in graphs/bench-8191-init.txt -o logs/prof/out.txt

total time: 0.208802s

Performance counter stats for ’./dijk-release -in graphs/bench-8191-init.txt -o logs/prof/out.txt’:

902.17 msec task-clock # 0.996 CPUs utilized

13 context-switches # 14.410 /sec

0 cpu-migrations # 0.000 /sec

65,903 page-faults # 73.050 K/sec

4,155,049,136 cycles # 4.606 GHz

9,875,077,959 instructions # 2.38 insn per cycle

1,966,852,513 branches # 2.180 G/sec

22,888,711 branch-misses # 1.16% of all branches

0.905845294 seconds time elapsed

0.794969000 seconds user

0.107860000 seconds sys

jtluo@ghc48:˜/618Project$ perf stat -e cache-references,cache-misses ./dijk-release \

-in graphs/bench-8191-init.txt -o logs/prof/out.txt

total time: 0.208367s

Performance counter stats for ’./dijk-release -in graphs/bench-8191-init.txt -o logs/prof/out.txt’:

44,904,780 cache-references

19,980,102 cache-misses # 44.494 % of all cache refs

0.915987465 seconds time elapsed

0.801012000 seconds user

0.112141000 seconds sys

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

C.2. Parallel Dijkstra with MDList Priority Queue

jtluo@ghc48:˜/618Project$ OMP_NUM_THREADS=4 perf stat ./pardijkMdlist \

-in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt

total time: 0.043833s

Performance counter stats for ’./pardijkMdlist -in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt’:

960.71 msec task-clock # 1.151 CPUs utilized

42 context-switches # 43.718 /sec

0 cpu-migrations # 0.000 /sec

134,352 page-faults # 139.847 K/sec

4,406,037,456 cycles # 4.586 GHz

9,603,341,725 instructions # 2.18 insn per cycle

1,938,623,691 branches # 2.018 G/sec

6,704,793 branch-misses # 0.35% of all branches

0.834623575 seconds time elapsed

0.800543000 seconds user

0.160108000 seconds sys

jtluo@ghc48:˜/618Project$ OMP_NUM_THREADS=4 perf stat -e cache-references,cache-misses ./pardijkMdlist \

-in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt

total time: 0.034470s

Performance counter stats for ’./pardijkMdlist -in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt’:

74,560,394 cache-references

28,549,722 cache-misses # 38.291 % of all cache refs

0.813469502 seconds time elapsed

0.797792000 seconds user

0.148333000 seconds sys

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

D. VTune results

Figure 19. The VTune result without Allocator

Figure 20. The VTune result with Allocator

