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Summary

For our course project, we investigated the perfor-
mance of a concurrent lock-free priority queue im-
plementation based on multi-dimensional linked
lists (MDList), which guarantees a O(log N)
worst-case for insertion and deletion operations.
We augmented the implementation to support du-
plicate priorities which allowed us to benchmark
its performance on a parallelized Dijkstra’s Sin-
gle Source Shortest Path (SSSP) algorithm, which
is a more realistic workload, in addition to mi-
crobenchmarks. We demonstrated that this imple-
mentation of a concurrent lock-free priority queue
scales well to high numbers of threads compared
to a naive lock-based implementation as tested
using OpenMP on GHC machines at CMU and
Bridges2 machines at PSC. In our experiment us-
ing a parallel SSSP benchmark, we achieved up to
100% of speedup improvement compared to the
coarse-grained priority queue with a global lock

in proper high concurrent situation.
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1. Background

To put our newly gained knowledge from this course into
practice, we decided to explore the implementation and
performance of lock-free data structures. While there have
been many implementation of lock-free trees, queues and
lists in past years we did not find any implementations of
priority queues so we felt this underexplored topic would be

a worthwhile subject.

1.1. Priority Queues

Scalable concurrent priority queues, which are pivotal to top-
ics such as the realization of parallelizing search algorithms,
priority task scheduling and discrete event simulation, has
been a research topic for many years (Zhang & Decheyv,
2016). The two main operations on priority queues are
Insert, which inserts an entry consisting of a priority and
an optional value into the data structure, and DeleteMin,
which removes the entry with the highest priority from the
data structure. In sequential implementations, this can be
achieved with binary search trees, binary min heaps, Fi-
bonacci heaps and other similar approaches. However, these
approaches do not transfer well to concurrent scenarios.
Particularly challenging is the necessity for maintaining a
consistent global data structure and ensuring all processors
agree on a highest priority entry under sequential consis-

tency.
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1.2. Single Source Shortest Path

To contextualize the use of a concurrent priority queue we
turned to a classical problem in computer science: single
source shortest path. This approach is used a large variety
of planning and optimization problems and is formulated as

follows:

Definition 1.1. Given a graph G(V, E), and a starting node
v, compute the length of the shortest path between v and all

other nodes.

For the purpose of this project, we restrict this problem to
undirected edges with positive weights, which can be effi-
ciently solved using Dijkstra’s algorithm, which internally
uses a priority queue to track which nodes to visit succes-
sively to update their distances. The pseudocode of the
sequential version using node O as the source is reproduced

in Algorithm 1.

Algorithm 1 Sequential Dijkstra
Input: Nodes {v;}, Edges {e;; }
Initialize visited = {}
Initialize dists[|{v; }|]1=0
Initialize pq = PriorityQueue
pq.insert(0, vg)
while pq not empty and |visited| < |[{v;}| do
dist, v = pq.DeleteMin()
visited = visited U v
for e,; € {e;;} do
if v; ¢ visited and dists[v] + e;; < dists[v,] then
dists[v;] = dists[v] + e
pq.Insert(dists[v;], v;)
end if
end for
end while

1.2.1. PARALLELIZED DIJKSTRA’S ALGORITHM

To adapt the sequential Dijkstra’s algorithm to multiple
workers we use the proposed algorithm from (Tamir et al.,

2015) with a fine grained per node lock on distances and

offers, which represent requests to update the distance of a
node. We used a parallelized version of this algorithm to
evaluate the correctness of our priority queue implementa-
tion and its efficacy on a realistic workload. The algorithm
is similar to the sequential version except the while loop

is run in parallel. The pseudocode is reproduced in Figure

1.2.1.

Graph (E,V,w) parallelDijkstra()

done[1..TNum] = [false,..,falsel while (!donel[tid])

D[1..1VI] = [oo,..,00] o = extractMin()

Element [1..|V|] Offer = if (o # null)
[null,..,null] u = o.data

Lock [1.. |V|] DLock d = o.key

Lock [1.. |V|] OfferLock lock (DLock [ul)

if (dist < D[ul)

relax(v,vd) D[u] = d
lock (OfferLock[v]) explore = true
if (vd < D[v]1) else
explore = false

vo = 0ffer[v]
if (vo = null)
Offer[v] = insert(v,vd)
else
if (vd < vo.key)
publishO0fferMP(v,vd,vo)
unlock (0fferLock[v])

publishOfferMP(v,vd,vo)
updated = changeKey(vo, vd)
if (lupdated and vd < D[v])

unlock (DLock [ul)
if (explore)
foreach ((u,v) € E)
vd = d + w(u,v)
relax(v,vd)
else
done [tid] = true
i=0
while (done[i] and i<TNum)
i= i+ 1
if (i == TNUM)

return
done[tid] = false

Offer[v] = insert(v,vd)

publishOfferNoMP (v, vd)
Offer[v] = insert(v,vd)

Figure 1. Parallel Dijkstra’s Algorithm

Note that we use publishOfferNoMP since we don’t want to
rely on priority queues having mutable priorities. To fix a
livelock issue present in the given pseudocode, we modified
the algorithm to reset elements of done to false at the end
of each exploration, which occurs when all relax calls of an

iteration are completed.

2. Approach

We chose to implement a version of concurrent lock-free
priority queue based on Multi-Dimensional Linked Lists

(MDList) inspired by the ideas of (Zhang & Dechev, 2016).
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We mainly applied the CAS technique to implement the lock-
free concurrent priority queue and provides two canonical
APIs, Insert and DeleteMin. Note that our implementation

considers smaller keys to be higher priority.

2.1. MDList Implementation

The priority of the each node on the priority queue is integer.
The priority will be firstly mapped to a high dimensional
vector using Algorithm 2 to uniquely locate the position of
the node during insertion operation. The algorithm maps
key in the range of [0, N) to vector coordinates by convert-
ing the integer key to a b-based number(b = [ ¥/N) and
using each digit as an entry. For example, if the dimen-
sion of the MDList D is 8, the upper bound of the key N is
232 and the given key is 1000, the result vector would be
[0,0,0,0,0,3, E, 8], which represents the key’s location on

the MDList.

Algorithm 2 Mapping from Integer to Vector

Input: int key
Output: int[D] k&
int basis < [ ¥/ N7, quotient < key, k[D]
fori € (D,0] do
kli] < quotient mod basis
quotient < |quotient = basis|
end for
return k

The structure of the MDList follows two rules: 1), we define
that the dimension of a node on the MDList is in the range
of [0, D). A node of dimension d has no more than (D - d)
children and each of the child node has a unique dimension
in the range of [d, D)[Rule 1]; 2) a non-root node of di-
mension d with a vector coordinates k = [k, k1, ..., kp—1]
and its parent with coordinates k' = [k{, k!, ...,k _4],

ki = k,Vi € [0,d) A kq > k,[Rule 2].

For the insertion process, we divide it into two steps: node

Algorithm 5. Pointer Marking

—

. const int F 4, +— 0x1, Fl,, « 0x2, Fyy « Ox1
: define SetMark p, m (p | m)

: define ClearMark p, m (p & ~ m)

. define IsMarked p, m (p & m)
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Figure 2. Pointer Marking

splicing and child adoption. At most two consecutive nodes
are updated in the insertion process. Splicing involves point-
ing from the new node to the ancestor’s old child and up-
dating the ancestor’s child pointer. Child adoption occurs
when Rule 1 is violated after Step 1. If the dimension of a
node increases from d to d’, its children in the range [d, d’)

must be adopted.

For the deleteMin operation, we apply logical deletion while
maintaining a deletion stack to provide the information
about the position of the next smallest node to reduce node
traversal. Meanwhile, we also implement a rewind stack
function to synchronized the insert and deleteMin opera-
tions. The stack rewind occurs only when the insertion
threads notice the stack points to a position beyond the new
node, which allows the insertion to move forward aggres-

sively without blocking the deleteMin() operation.

We also applied the pointer marking technique in Figure 2
to mark adopted child and deleted nodes with three flags

Fadp, Fprg and Fdel.

2.1.1. DATA STRUCTURES

The structure of each node on the MDList is defined as
follows(Algorithm 3). The descriptor object records the
pending task of child adoption with information about the
parent node and the range of the child to be adopted. A

node in MDList contains a key-value pair, an array k[D] of
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integers as the coordinate vector, an array of child pointers
and a child adoption descriptor. To implement the pointer
marking technique, we left shift the val by 1 bit and use the
last bit as a Fdel flag. The dth pointer in the child array links
to a dimension d child node. For simplicity, we allocate a
child array of size D for every node while children at higher
dimensions have less children. The version number helps
us keep track of the proper timing for deletion stack rewind.
The delete stack consists of a head pointer and an array of
nodes of length D. The pointer at index D — 1 points to
the last discarded node, and the pointer at index [0, D — 1)
points to the its parents at previous dimensions. All nodes
in the stack form a path through which the next minimum
node can be reached. The PriorityQueue object contains
constant variables to indicate the MDList’s dimension and
size, a dummy head of the priority queue and a deletion

stack.

Algorithm 3 Priority Queue Structures
struct Node
int ver
TKey key
TVal val
Node* child][D]
AdoptDesc* adesc
int k[ D]
struct AdoptDesc
Node* curr
int dp, dc
struct Stack
Node* head, node[D]
class PriorityQueue
const int D, N
Node* head
Stack* stack

2.1.2. INSERT

In the Insertion operation(Algorithm 4), we firstly imple-
ment the inline function LocatePred to figure out the target

insertion location by determining the newly inserted node’s

predecessor pred and successor curr and figuring out the
new node’s dimension dp and its child’s new dimension
dc. If there are pending child adoptions tasks for the pre-
decessor and successor, we firstly finish the adoption by
calling the finishInserting() function(Algorithm 5). Then
we tried to insert the new node between pred and curr by
applying the CAS technique. The CAS will fail in two
cases: 1) another thread inserted a child into the desired
child slot; 2) the child slot has been marked as invalid by
parents. If it is the case 1, we retry the insertion from the
predecessor. Otherwise, we retry the insertion from the head
of the MDList. If the insertion into the target child slot suc-
ceed while the new node was inserted into a position before
the last known deleted node, that cannot be reached by the
subsequent deleteMin operations, we need to rewind the
deletion stack(Algorithm 6). Figure 3 briefly illustrates how
the insertion operation works. To insert a new node (2,0, 0)
into a 3DList, we firstly locate the position to put into the
new node starting from the root node (0, 0, 0) with dimen-
sion 0. To obey Rule 2 mention in we increase the search
dimension from O to 1 and iterate to root node’s child node
in dimension 1 (1,0, 2). Continually, we move the pointer
to node (1,0, 2)’s 1-dimension child and find the current
node 2,0, 1 that violates the Rule2. In this way, we find the
pred node (1,0, 2) and the cur node (2,0, 1). Then we fill
in the new node, which takes over two children (3,0, 0) and
(2,1,0) from the old child (2,0, 1). The dimension of the
old child increased from O to 2 because of the insertion. If
node (2,0, 1) has children within the range of [0, 2), they
must be adopted. Figure 4 shows the scenario when we need
to rewind the stack. The newly inserted node 4 was inserted
before the last deleted node marked by the old stack, 5. We

rewind the deletion stack to point to the closest deleted node
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before the newly inserted node, 3.

Figure 3. INSERT Operation in a 3DList

0—1—+3 “5—6—8—9—10
—_
s Sold

Figure 4. The Stack Rewind Scenario

2.1.3. DELETEMIN

In our implementation, we only implement the logical dele-
tion shown in Figure 5. According to the Rules define in sec-
tion 2.1, the next possible minimum will be the child node
of most recently deleted node(the last entry of the stack)
in dimension D - 1. This is because the top of the stack
stack[D - 1] has the largest key among all the marked nodes
and its smallest child should be assigned with the highest
dimension. This is our starting point of search. We traverse
the deletion stack from the top to see whether there is a
node on the stack stack.node[i] that has a unmarked child.
Notice the location of the nodes on the stack is correspond-
ing to their dimensions, we can easily get the dimensional
range of their children, [i, D). Figure 6 illustrates how the

deletion stack helps with the deleteMin(). The red mark

Algorithm 4 Concurrent Insert

Input: TKey{key}, TVal{val}
nodeStack™* stack < new Stack
Node* node <— new Node
node.key < key, node.val < val
node.key[0 : D] <+ KEYTOCOORD(key)[0:D]
node.child[0 : D] + NIL
Node* pred < NIL
Node* curr < head
dp < 0,dc + 0
nodeStack.head = currNode
while true do
LOCATEPRED()
if dc = D then
break
end if
FINISHINSERTING(pred, pred < dp, pred < dc)
FINISHINSERTING(curr, curr < dp, curr < dc)
FILLNEWNODE()
if CAS(&pred.child|dp], curr,node) then
FINISHINSERTING(node, node <— dp, node <— dc)
REWINDSTACK()
break
end if
end while
inline function LOCATEPRED()
while dc < D do
while curr # NIL and node.k[dc] > curr.k[dc] do
pred < curr,dp < dc
curr — CLEARM ARK (curr +—
child, Fadp|Fprg)
end while
if curr = NIL or node.k[dc] < curr.k[dc] then
break
else
nodeStack.nodeldc] < curr,dc + dc + 1
end if
end while
inline function FILENEWNODE()
node.adesc < NIL
if dp # dc then
node.adesc < new AdoptDesc
node.adesc.curr < curr
node.adesc.dp < dp,node.adesc.dc <+ dc
end if
node.child[0 : dp] + Fadp
node.child[dp : D] < NIL
node.child[dc] < curr
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Algorithm 5 Child Adoption

Input: Node* {n}, int {dp}, int {dc}

if n = NIL then
return

end if

AdoptDesc* ad < n.adesc

if ad = NIL or dc < ad.dp or dp > ad.dc then
return

end if

Node* child, curr < ad.curr

int dp < ad.ap, dc < ad.dc

for i € [dp,dc) do
child <— FETCHANDOR (curr.child[i], Fadp)
child + CLEARMARK( child, Fadp)
CAS(&n.child[i], NIL, child)

end for

n.adesc < NIL

Algorithm 6 Rewind Deletion Stack
inline function REWINDSTACK()
Stack* prevStack < NIL
Stack* currStack < stack
Stack* newStack < new Stack

repeat
if nodeStack.head.ver = prevStack.head.ver
then
if node.key # currStack.node[D — 1].key then
newStack.node|0, dp) —

nodeStack.nodel0, dp]
newStack.nodeldp, dc] < pred
else if prevStack = NIL then
xnewStack < xcurrStack
else
break
end if
end if
until CAS(&stack, currStack, newStack) or
ISMARKED(node.val, F'del)

of nodes indicates they have been logically deleted. And
the stack recorded the latest deleted stack following by its
parents at previous dimensions. So in the given 3DList and
deletion stack, we firstly reads s.node[2] = (1,1, 3) and
examines the dimension 2 child s.node[2].child[2]. Since
the node (1,1, 3) has no child in our example, we back-
track to s.node[l] = (1,1,2) and examine its dimension
1 child s.node[1].child[1] = (1,2,1). Because this node
is unmarked, we marked it as deleted and then update the
deletion stack to reflect the new deletion. If the node found
by the current thread is deleted by some competing thread,
we update the local copy of stack and retry the search from

the D- 1 dimension.

Algorithm 6. Concurrent DeleteMin

1: functhon (DeleteMin)

2 Node* min — NIL

3  Stack® 5,4 — stack, s — newStack
4 *5 — k8,00

5 intd— D-1

f:  whiled = () do

7 MNode* last — s.node|d]

o 4 FinisHINSERTING [ast, d, d)

o Node* child — last.child]d]

10: child — CLEARMARK( child, Fop| Fyrg)

11: if child = NIL then

12 d—d—1

13 continue

14: void* val — child.val

15 if sMARKED({val, Fj;) then

16 if CLEARMARK (val, Fjy.) = NIL then

17 snodeld : D] — child

18: de— D—1

19 else

20 s.head — CLEARMMARK{ val, Faq)

21 snodell : D] — shead, d — D—1

22 else if CAS(childval, val, SETMARK(val, Fj.)) then
23 smodeld : D — child, min — child

24: CAS(Lstack, s.4, 5)

25 if marked_node > R and nof_purging then
26: PurGE (s.head, snode[D —1])

27 break

28: return min

Figure 5. The Stack Rewind Scenario
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Figure 6. The Stack Rewind Scenario

2.2. Extensions and Modifications

Beyond the basic implementation of the priority queue de-
scribed in (Zhang & Dechev, 2016), we needed to make a
few modifications in order to support workloads such as the

parallelized Dijkstra’s algorithm described in Section 1.2.1.

2.2.1. DUPLICATE PRIORITIES

The basic implementation of the MDList based priority
queue assumes all keys are unique integers, similar to other
previous skiplist-based algorithms referened in(Zhang &
Dechev, 2016). A side effect of this assumption is that
we cannot use 0 as a key since during initialization of the
priority queue a dummy value with that key is inserted into
the data structure. Additionally, the lack of support for
duplicate keys is also problematic for our SSSP benchmark
since the priorities represent the distances to the node stored
in the value field, which can be duplicated. In fact, we
may encounter multiple identical tuples if there are multiple

paths to the same node with identical lengths in the graph.

To support such workloads, we partition the address space
into two separate components: a key that is supplied to

the Insert operation and a unique identifier that is assigned

by the priority queue itself. For example, given a 32-bit
key space, we use 19 bits to store the keys provided by
the user and 13 bits to represent unique identifiers. The
priority queue maintains an array of 2! counters, one for
each possible key the user can specify, and we atomically
increment these values upon each insert call. The final key
is composed of the user’s key in the upper 19 bits and the

unique ID in the lower 13 bits.

While this allows us to handle duplicate keys, it requires the
user to specify how the key space is divided between IDs
and raw keys and introduces another point of synchroniza-
tion via an atomic fetch-and-increment operation. In our
implementation the user can specify the type used for keys
(e.g. uint for 32 bits or unsigned long for 64 bits) as well
as the number of bits reserved for unique IDs via template

parameters.

2.2.2. DELETEMIN RETURN VALUES

Another modification we needed to make to the priority
queue more simple to use is to return the priority, stored
value and a flag indicating whether the values retrieved
are valid instead of returning a pointer to an internal type
Node. The flag is used to determine whether DeleteMin
failed since the priority queue is empty. This required some
modification of the algorithm in the reference paper since
the value was stored as a pointer which sometimes is used
to store temporary information that is unrelated to stored

values.

2.2.3. NUMERIC VALUES

The next major modification is to allow arbitrary types for

values associated with each key. In the basic MDList im-
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plementation, the value is stored as a void pointer. This is
inconvenient since it requires values to be stored at specific
memory locations without being overwritten throughout the
entire execution of the program. Unfortunately for integer
type values, this is not the case since often it is passed as an
argument to the Insert function which marshalls the value
via the stack, the space for which may be reused for other
arguments in subsequent calls. Since we didn’t want the
priority queue to handle allocations and memory manage-
ment for different value types, we opted for a design where
the user explicitly specifies the type to be used for values,
be it an integer type or a pointer type. This requires some
modifications to the logic since the algorithm proposed in
(Zhang & Dechev, 2016) involves a deletion flag that is co-
located with the void pointer to the value which we resolved

by reserving one bit in the value for such a flag.

2.2.4. EXCLUSION OF PHYSICAL DELETION

Our reference paper (Zhang & Dechev, 2016) specifically
disables physical deletion during its performance analysis
in order to achieve parity with behaviours observed in other
similar data structures such as TBBPQ which does not free
memory until the termination of the object. Since we wanted
to maintain functional parity with the reference paper, we
decided to also support only logical deletion in our imple-

mentation.

2.2.5. PSEUDOCODE BUGS

Throughout our implementation, we found many issues with
the pseudocode provided by the reference paper (Zhang &
Dechev, 2016) so our implementation differs from its de-
scription in several places. Though we won’t be exhaustive,

here are a few key differences:

* The loop described in the pseudocode for DeleteMin
needs to be performed for all dimensions in [0, D)

instead of (0, D) indicated.

¢ The FinishInserting call in DeleteMin should be im-
plemented using the current and predecessor dimen-

tions instead of d.

* When copying the stack, it needs to be a deep copy
instead of a shallow copy implied by the pseudocode
to prevent contamination of stack updates between

concurrent threads.

* The initialization of the priority queue requires the
insertion of a dummy node for the key 0. However,
to support stack rewind correctly, this node needs to
be marked as deleted, which was not clear from the

pseudocode.

2.3. Unsuccessful optimizations

We attempted a few optimizations guided by our profiling
results but either did not see any improvement or did not

have time to thoroughly test them.

2.3.1. ALLOCATION PooOL

One of the bottlenecks in our Insert operation is the ad-
ditional overhead of allocating space to store metadata for
each new entry. For example, we need to allocate space for
a new Node, AdoptDesc and Stack for each new entry. This
is a significant overhead over the C++ std::priority_queue
which stores a value directly without additional allocations.
This is consistent with suggestions from discussions on other
concurrent priority queue implementations which recom-
mend reusing memory via an allocation pool. We decided

to attempt a naive allocation pool where we pre-allocate a
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fixed number of Node, AdoptDesc and Stack and use an
atomic counter to return an address in the pre-allocated pool.
However, from our testing we did not see any performance
benefit and we suspect the benefits of pre-allocating the
memory is canceled out by the overhead of maintaining an

atomic counter.

2.3.2. PHYSICAL DELETION

While we implemented physical deletion on a branch in our
repository, we did not finish completely testing it and there-
fore do not know the performance impact it may potentially
have. However, we suspect it will significantly improve
certain scenarios such as the Mixed Microbenchmarks dis-
cussed later in this report. However, for other scenarios,
the additional overhead of maintaining all the infrastruc-
ture to support physical deletion might be detrimental for

performance.

2.3.3. MISCELLANEOUS OPTIMIZATIONS

Finally we tried out a few simple optimizations and different
settings for the dimension hyperparameter to see they had
any impact on the memory pressure we observed in our
microbenchmark profiling. For example, we tried to reduce
the overhead of maintaining an atomic counter for each key
to generate unique IDs and instead use a single counter for a
bucket of keys. Also, we tried to use different types for keys
such as uints instead of longs to reduce the memory used to
store each element. Finally we tried to vary the dimension
hyperparameter, trying a setting of 4 and 16. None of these
attempts made any noticeable difference in performance
metrics indicating that these are not the bottlenecks in our

implementation.

2.4. Technologies used

We implemented the MDList based priority queue and par-
allel Dijkstra SSSP algorithm in C++14 compiled with gcc
version 11.3.0 with optimization level O3. The paralleliza-
tion is implemented using OpenMP. Benchmarking scripts
to collect performance metrics and checking correctness are

written in Python3.

For the benchmarking environments we collected data using
GHC machines at CMU with Intel(R) Core(TM) i7-9700
CPU @ 3.00GHz processor and 16 GB memory and PSC
Bridges2 nodes with AMD EPYC 7742 64-Core Processor
and 256 GB memory.

3. Experiments

As part of our experiments, we evaluated the correctness and
performance of our MDList priority queue using two ben-

chamrks: synthetic microbenchmarks and Dijkstra’s SSSP.

3.1. Microbenchmarks

For the microbenchmarks evaluating raw priority queue per-
formance on synthetic traffic, we mimicked the reference
paper (Zhang & Dechev, 2016). In the paper, the perfor-
mance is evaluated on three types of traffic: 100% Insert,
100% DeleteMin and a Mixed pattern consisting of 50%
Insert and 50% DeleteMin. For the mixed pattern, the inser-
tion and deletion operations are determined randomly for
each iteration. All traffic patterns are run using 1M iterations
in our microbenchmarks. The performance is measured by

operations per second, as was done in the reference paper.
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3.1.1. RESULTS

For full details on microbenchmark results see Appendix B.
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Figure 7. Microbenchmark on GHC - 100% Insert
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3.1.2. DISCUSSION

In general, we see the common trend that coarse grain lock
based concurrent priority queues generally performs well
on 1 thread but quickly degrades as the number of threads
increases. This clearly illustrates the limitations of a single
lock under high contention where additional threads simply
leads to more time spent waiting for the lock to be available
and therefore a decrease in overall throughput as measured
by operations per second. This effect is observed on both

GHC and PSC machines.

In contrast, the performance of MDList concurrent queue
generally scales well to higher number of threads. For the
100% Insert scenario on PSC, we observed an increase in
performance up to 32 cores before additional cores lead to
a decrease in performance. The MDList implementation
outperforms the coarse grain lock for 16 cores or above. For
the lower thread numbers (< 8), the MDList implementation
performs poorly due to the high amount of overhead in its
implementation to compute vector coordinates, managing
flags and states, updating child pointers and tracking stack
updates. For the intermediate number of threads (8 - 32),
the overhead of MDList implementation becomes less sig-
nificant and the benefits due to lock freedom, fewer number
of nodes in each dimension and only requiring the modi-
fication of two consecutive nodes per insert becomes the
dominant effect that helps it to continue improve its perfor-
mance given more cores. Finally at extremely large number
of threads (> 32), the MDList starts to see degraded perfor-
mance and (Zhang & Dechev, 2016) suggests that this is
due to the context switching overhead as beyond 64 threads,

the executions are likely to be no longer fully concurrent

given underlying hardware limitations. We observe a similar
trend on GHC machines but due to the limited number of
cores, we do not see any performance improvement of using

MDList compared to a coarse grained lock implementation.

For the 100% Delete scenario, we see a relatively con-
stant operations per second across all number of threads
on PSC and GHC. This is expected as DeleteMin is an
inherently a sequential bottleneck of a priority queue algo-
rithm. However, we observe that the constant performance
of the MDList priority queue represents an improvement
over a coarse grained lock implementation starting at as
little as 4 threads. This is because the lock free MDList
implementation, while inherently sequential, does not suf-
fer from lock contention between threads that limits the

performance of the coarse grained lock implementation.

Finally, we observe relatively poor performance of MDList
on Mixed traffic scenarios compared to the coarse grained
lock implementation. However, this is a side effect of how
the benchmarks are constructed. We followed the reference
paper’s approach in (Zhang & Dechev, 2016) which does not
perform any physical deletion. On the other hand the coarse
grained lock implementation uses a C++ priority_queue im-
plementation that performs explicit physical deletion. As a
result, the coarse grained lock implementation holds rela-
tively few number of entries in its data structure during this
benchmark compared to the MDList implementation which
holds an ever increasing number of entries. As such, the
MDList suffers from a large amount of entries and memory
pressure since it only performs logical deletion. We found

this effect too late during our analysis and profiling to in-
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clude physical deletion in this microbenchmark and leave it

as potential future work.

3.1.3. ANALYSIS

To figure out the bottleneck of the MDList, we used VTune
to measure the timing spend on each part of the code. One
of our assumptions is that the time to create new node and
new stack takes up most of the CPU time besides the busy
time to add and delete nodes. As a result, we compare the
CPU profile of the normal MDList and MDList with an

allocator on PSC with 128 threads.

The results is shown as follows. From Figure 19 in Appendix
D, the DeleteMin and operation new uses up most of the
CPU time. To confirm our assumption that the overhead
of creating more dynamic memory cause the downgrade of
performance, we tried to preallocate the memory needed for

the MDList node and stack creation with the Allocator.

We can see from the Figure 20 in Appendix D the CPU times
for DeleteMin did decrease. However, the time taken by
inserting increases with the cost of synchronization within

the Allocator’s atomic counters.

3.2. SSSP Benchmarks

To generate the inputs to our Dijkstra’s SSSP benchmarks,
we created a script to generate a graph with 64, 256, 1024,
4096 and 8191 nodes. To reduce the size of our input files,
we then randomly generate non-zero weights for 5% of
the possible edges between all nodes. As a baseline to
compare our correctness and performance, we implemented
a sequential version of Dijkstra using a priority queue to

generate an output that consists of the distances to all nodes,

which is used to judge correctness, as well as the time to run
this sequential algorithm for all graph sizes, which is used

to judge performance.

3.2.1. PARALLELIZED SSSP

For a baseline to evaluate the performance of concurrent pri-
ority queues, we implemented a simple coarse grained lock
concurrent queue that uses a single global lock to synchro-
nize insertion and deletion operations. We evaluate its per-
formance to set a baseline speedup for the parallelized SSSP
benchmark. The performance is measured by its speedup

compared to the sequential Dijkstra SSSP algorithm.

3.2.2. RESULTS

Note that while we ran this benchmark for all generated
graph sizes, only the 1024, 4096 and 8191 nodes scenar-
ios are presented here as the performance smaller graphs
are generally more noisy and their behaviour is similar to
the 1024 node graph. For full details on SSSP results see

Appendix A.
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Figure 13. SSSP Benchmark on GHC - 1024 Nodes
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Figure 15. SSSP Benchmark on GHC - 8191 Nodes
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Figure 16. SSSP Benchmark on PSC - 1024 Nodes
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Figure 18. SSSP Benchmark on PSC - 8191 Nodes
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3.2.3. DISCUSSION

In general, we can see that the results on both GHC and PSC
follow the same trend suggesting that our performance is rel-
atively insensitive to machine architecture. Also, the coarse
grain lock implementation performs better (i.e. higher
speedup) than the MDList for scenarios with fewer threads
and smaller number of nodes. This is due to the relatively
high overhead of the MDList implementation. When given
smaller problem sizes and few threads, the overhead are
significant but for larger problem sizes and more threads,
the concurrency benefits begin to dwarf the overhead. Over-
all, we see that MDList outperform coarse grain lock with

for scenarios with > 4 threads on GHC machines and > 8

threads on PSC machines.

For coarse grain lock priority queue, we see that it scales
poorly with additional threads under the parallelized SSSP
workload. This is because it is quickly limited by the lock
contention of the coarse grain lock. For example, the beyond
2 threads, the speedup increases much more slowly or even

decrease.

For the MDList implementation we see poor speed up perfor-
mance for when the number of threads is low. This is mostly
due to the high overhead of the MDList implementation.
For example, the structure of the node on the list is much
more complicated than that on the coarse grain lock priority
queue, containing information regarding the child nodes, the
child adoption task and etc. In low concurrency situation,
the large overhead limits the overall performance. However,
when the thread number is higher, the MDList which sup-

ports concurrency without incurring higher synchronization

cost outperforms the coarse grain lock implementation. As
for the decreasing trend at the end of the graph, one factor
is that the high competition on the MDList gives rise to
more retry on CAS failure. We also notice that the larger
the number of nodes, the better the speedup performance
especially with higher thread numbers. This is because the
larger number of nodes helps better utilize the multi cores

sources.

3.2.4. ANALYSIS

One surprising results we further analyzed was the superlin-
ear speedup observed on the 8191 Nodes benchmark with
4 threads using the MDList priority queue implementation
where we observed a speed up value of 4.38. From our
profiling result, we conclude that this is mainly caused by
two factors. First we see a slight reduction in branch misses
of 0.35% compared to 1.16% in the sequential SSSP imple-
mentation. This is primarily because MDList priority queue
does not rebalance the data structure on insert or delete. In
contrast the sequential SSSP uses std::priority_queue which
rebalances on insert and delete, which involves additional
branching logic that are likely to be branch-misses. Also
we see a reduction of cache miss rate from 44.49% in the
sequential implementation to 38.29% in the MDList priority
queue implementation. This is likely due to the fact that
distributing the work among more threads reduces the work-
ing set for each thread, leading to higher probability that it
will fit within the cache. This does not scale linearly with
the number of threads because due to the random access
patterns dictated by the priority queue, we can’t partition
the data required when running parallelized Dijkstra’s al-
gorithm into completely disjoint sets between the workers.

Instead this is more of a probabilistic division where each



Lock-Free Priority Queue Based on Multi-Dimensional Linked Lists

worker likely examines a smaller portion of graph verticies

and edges. For detailed profiling results see Appendix C.

We also had a suspicion that the CAS loop, while lock free,
may lead to poor performance if it retries often, leading to
a lot of wasted work. To test this theory we added diagnos-
tics for successful and failed CAS counts and found that
there is significant overhead in DeleteMin. For reference,
we found that the MDList priority queue implementation
running on 8 threads for the SSSP problem with 8191 nodes
needed 36063 attempts to insert 34840 entries (a success
rate of 96.6%) and 250915 attempts to delete 34848 entries
(a success rate of 13.9%). This shows that CAS retries is a

significant bottleneck for DeleteMin.

3.3. General Discussion

One of the main hyperparameters for this data structure is
the number of dimensions. While we did not perform a
full ablation study, we used the the findings from (Zhang &
Dechev, 2016) to use a dimension of 8 given that our key
space is 32 bits. This dimension seems to have the most
stable and highest average performance across a wide range

of thread numbers from 1 to 128.

While we are excited to be able to observe tangible per-
formance improvements using a MDList based concurrent
priority queue and adapt it to solve a practical problem like
SSSP, we must clarify that the range of problems that this
approach is applicable to may be narrow. In fact, many
algorithm that uses a priority queue in its sequential version
often uses a completely different approach in parallelized

versions. This is because there is an inherent bottleneck

in maintaining consensus of minimum entry in a priority
queue. For example, more recent approaches for parallelized
SSSP algorithms completely avoids using a priority queue

(Srinivasan et al., 2018).

4. Further work

There are several avenues of exploration to further explore

the topics visited in this project.

4.1. Concurrent Memory Allocation

We briefly explored this topic as we believe that our Insert
is severely hindered due to its numerous allocations of small
portions of memory. While our naive implementation of
a memory pool did not yield any performance benefit, we
believe that there are alternative malloc implementations

that are worth evaluating such as (Evans, 2006).

4.2. Comparisons Against Alternative Implementations

We are aware of multiple other implementations of concur-
rent priority queues such as Intel’s skip list based TBBPQ
(Shavit & Lotan, 2000) and fine grain approaches such as
(Hunt et al., 1996). Thought these are worth considering,
they were evaluated as part of (Zhang & Decheyv, 2016) so

we felt there’s little need to duplicate this effort.

4.3. Further Experimentation on MDList Bottlenecks

We unfortunately did not have sufficient time to use the
results of our analysis to motivate additional experiments
on optimizations to reduce the overheads and bottlenecks
of the MDList based priority queue. Given additional time
and resources, it would have been interesting to explore

whether we can improve on the existing implementation
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using additional techniques learned in this class.

4.4. Physical Deletion

Though this feature is not required for correctness and we
chose to not implement it for benchmark consistency rea-
sons, we believe that for real workloads this will be highly
impactful since it relieves memory pressure by periodically
purging entries that have been deleted. It would be inter-
esting to see if this feature would change any of the perfor-

mance metrics we constructed.

5. Work Distribution

Yumin Chen and Jun Tao Luo divided work into roughly

equal portions and would like to share the credit equally.

Table 1. Work Assignment

TASK Luo CHEN

LITERATURE REVIEW
MDLIST DATA STRUCTURES
COARSE GRAINED PQ
DELETEMIN
BENCHMARK SCRIPTS
MILESTONE REPORT
INSERT

CORRECTNESS CHECKS
PROFILING AND ANALYSIS
FINAL REPORT

POSTER

NN N S NN
SN N N R NEN

6. Conclusion

We are pleased that we are able to implement additional fea-
tures for a MDList based concurrent priority queue and use
it to solve SSSP problems correctly. We were also able to
demonstrate that it scales well under high contention scenar-
ios with many threads with both synthetic microbenchmarks
and more realistic workloads compared to a naive coarse

grained lock based priority queue on both GHC and PSC

hardware.
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A. Detailed Parallelized SSSP Result

A.1. GHC Machines

A.1.1. GLock

—-— Performance Table —--—-—

Scene Name | 2 | 4 | 8

bench-64 | 8.8e-05 | 0.000187 | 0.000387
bench-256 | 0.000359 | 0.000677 | 0.000395
bench-1024 | 0.001439 | 0.001488 | 0.001765
bench-4096 | 0.015637 | 0.010914 | 0.010777
bench-8191 | 0.055649 | 0.03562 | 0.029518

—— Speedup Table ———

Scene Name | 2 | 4 | 8
bench-64 | 0.272727 | 0.128342 | 0.062016
bench-256 | 0.615599 | 0.326440 | 0.559494
bench-1024 | 1.963864 | 1.899194 | 1.601133
bench-4096 | 2.173435 | 3.113982 | 3.153568
bench-8191 | 2.694388 | 4.209433 | 5.079612
A.1.2. MDLIST

Scene Name | 2 | 4 | 8
bench-64 | 9.3e-05 | 0.000145 | 0.000241
bench-256 | 0.000481 | 0.000394 | 0.000663
bench-1024 | 0.002044 | 0.001297 | 0.001019
bench-4096 | 0.018798 | 0.01044 | 0.00682
bench-8191 | 0.116867 | 0.034208 | 0.021115

—— Speedup Table ———

Scene Name | 2 | 4 | 8

bench-64 | 0.258065 | 0.165517 | 0.099585
bench-256 | 0.459459 | 0.560914 | 0.333333
bench-1024 | 1.382583 | 2.178874 | 2.773307
bench-4096 | 1.807958 | 3.255364 | 4.983284

bench-8191 [ 1.282997 | 4.383185 [ 7.101113
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A.2. PSC Machines

A.2.1. GLock

—— Performance Table ——-
Scene Name | 2 | 4 | 8 | 16 | 32 | 64
bench-64 | 0.00038 | 0.000424 | 0.000798 | 0.000998 | 0.0029 | 0.015268
bench-256 | 0.000739 | 0.000841 | 0.001232 | 0.001479 | 0.005017 | 0.014617
bench-1024 | 0.004475 | 0.004144 | 0.00528 | 0.006038 | 0.006879 | 0.025166
bench-4096 | 0.037754 | 0.028192 | 0.023348 | 0.025711 | 0.028318 | 0.029211
bench-8191 | 0.118094 | 0.08308 | 0.066503 | 0.054562 | 0.052378 | 0.050342

-- Speedup Table ---

Scene Name | 2 | 4 | 8 | 16 | 32 | 64

bench-64 | 0.052632 | 0.047170 | 0.025063 | 0.020040 | 0.006897 | 0.001310
bench-256 | 0.441137 | 0.387634 | 0.264610 | 0.220419 | 0.064979 | 0.022303
bench-1024 | 0.934525 | 1.009170 | 0.792045 | 0.692613 | 0.607937 | 0.166177
bench-4096 | 1.643561 | 2.201014 | 2.657658 | 2.413403 | 2.191221 | 2.124234
bench-8191 | 2.194616 | 3.119535 | 3.897132 | 4.750027 | 4.948089 | 5.148206

A.2.2. MDLIST

-— Performance Table ---

Scene Name | 2 | 4 | 8 | 16 | 32 | 64
bench-64 | 0.000495 | 0.000597 | 0.000888 | 0.001161 | 0.007756 | 0.015296
bench-256 | 0.001165 | 0.00097 | 0.001062 | 0.00135 | 0.00224 | 0.014903
bench-1024 | 0.007018 | 0.004686 | 0.003832 | 0.003232 | 0.005098 | 0.020723
bench-4096 | 0.05107 | 0.031908 | 0.02054 | 0.014684 | 0.011624 | 0.01802
bench-8191 | 0.152874 | 0.087819 | 0.051448 | 0.03851 | 0.027803 | 0.028424

—-— Speedup Table —--—-

Scene Name | 2 | 4 | 8 | 16 | 32 | 64

bench-64 | 0.040404 | 0.033501 | 0.022523 | 0.017227 | 0.002579 | 0.001308
bench-256 | 0.279828 | 0.336082 | 0.306968 | 0.241481 | 0.145536 | 0.021875
bench-1024 | 0.595896 | 0.892446 | 1.091336 | 1.293936 | 0.820322 | 0.201805
bench-4096 | 1.215019 | 1.944685 | 3.020983 | 4.225756 | 5.338180 | 3.443452
bench-8191 | 1.695324 | 2.951195 | 5.037533 | 6.729966 | 9.321692 | 9.118034
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B. Detailed Microbenchmark Results

B.1. GHC Machines

—-— Performance Table —--—-—

Scene Name | 1 | 2 4 | 8
PQGLock Insert | 0.020509 | 0.0445174 0.0891181 | 0.149741
PQGLock Delete | 0.111597 | 0.136812 0.179392 | 0.265326
PQOGLock Mixed | 0.031956 [ 0.115131 0.209116 | 0.281722
POMDList Insert | 0.827034 | 0.435831 0.237808 | 0.130466
POMDList Delete | 0.144778 | 0.143114 0.149287 | 0.161638
POMDList Mixed | 0.578207 | 0.345395 0.228541 | 0.213554

~—- Ops/s Table —--—-—
Scene Name | 1 | 2 4 | 8
PQGLock Insert | 48.759 MOps/s | 22.463 MOps/s 11.221 MOps/s | 6.678 MOps/s
PQGLock Delete | 8.961 MOps/s | 7.309 MOps/s 5.574 MOps/s | 3.769 MOps/s
PQGLock Mixed | 31.293 MOps/s | 8.686 MOps/s 4.782 MOps/s | 3.550 MOps/s
POMDList Insert | 1.209 MOps/s | 2.294 MOps/s 4.205 MOps/s | 7.665 MOps/s
PQOMDList Delete | 6.907 MOps/s | 6.987 MOps/s 6.699 MOps/s | 6.187 MOps/s
POMDList Mixed | 1.729 MOps/s | 2.895 MOps/s 4.376 MOps/s | 4.683 MOps/s

B.2. PSC Machines

7— Performance Table —--—-
Scene Name |1 | 2 | 4 | 8 16 32 | 64 128
PQGLock Insert | 0.0211886 | 0.0937253 | 0.0982313 | 0.125577 0.595807 0.466818 | 0.636549 0.75646
PQGLock Delete | 0.117585 | 0.423217 | 0.779008 | 1.56822 1.78209 2.27517 | 2.74327 3.58381
PQGLock Mixed | 0.0399167 | 0.221527 | 0.239356 | 0.32732 0.367156 1.00724 | 0.778583 0.910591
POMDList Insert | 1.89338 | 1.2012 | 0.65312 | 0.354061 0.205459 0.181712 | 0.2348 0.278263
PQMDList Delete | 0.418828 | 0.552922 | 0.474337 | 0.431324 0.432042 0.418187 | 0.434104 0.382783
POMDList Mixed | 1.19834 | 0.889697 | 0.659059 | 0.788896 0.851559 0.912034 | 1.00867 1.17951

-- Ops/s Table —-—-
Scene Name |1 | 2 | 4 | 8 16 32 | 64 128
PQGLock Insert | 47.195 MOps/s | 10.669 MOps/s | 10.180 MOps/s | 7.963 MOps/s 1.678 MOps/s 2.142 MOps/s | 1.571 MOps/s 1.321 MOps/s
PQGLock Delete | 8.504 MOps/s | 2.363 MOps/s | 1.284 MOps/s | 0.638 MOps/s 0.561 MOps/s 0.440 MOps/s | 0.365 MOps/s 0.279 MOps/s
PQGLock Mixed | 25.052 MOps/s | 4.514 MOps/s | 4.178 MOps/s | 3.055 MOps/s 2.724 MOps/s 0.993 MOps/s | 1.284 MOps/s 1.098 MOps/s
POMDList Insert | 0.528 MOps/s | 0.833 MOps/s | 1.531 MOps/s | 2.824 MOps/s 4.867 MOps/s 5.503 MOps/s | 4.259 MOps/s 3.593 MOps/s
POMDList Delete | 2.388 MOps/s | 1.809 MOps/s | 2.108 MOps/s | 2.318 MOps/s 2.315 MOps/s 2.089 MOps/s | 2.304 MOps/s 2.612 MOps/s
POMDList Mixed | 0.834 MOps/s | 1.124 MOps/s | 1.517 MOps/s | 1.268 MOps/s 1.174 MOps/s 1.096 MOps/s | 0.991 MOps/s 0.847 MOps/s
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C. Superlinear Speedup Profiling Results

C.1. Sequential Dijkstra

jtluo@ghc48:7/618Project$ perf stat ./dijk-release \
-in graphs/bench-8191-init.txt -o logs/prof/out.txt

total time: 0.208802s

Performance counter stats for ’./dijk-release -in graphs/bench-8191-init.txt -o logs/prof/out.txt’:

902.17 msec task-clock # 0.996 CPUs utilized
13 context-switches # 14.410 /sec
0 cpu-migrations # 0.000 /sec
65,903 page—-faults # 73.050 K/sec
4,155,049,136 cycles # 4.606 GHz
9,875,077,959 instructions # 2.38 insn per cycle
1,966,852,513 branches # 2.180 G/sec
22,888,711 branch-misses # 1.16% of all branches

0.905845294 seconds time elapsed
0.794969000 seconds user

0.107860000 seconds sys

Jjtluo@ghc48:7/618Project$ perf stat —e cache-references,cache-misses ./dijk-release \
-in graphs/bench-8191-init.txt -o logs/prof/out.txt
total time: 0.208367s

Performance counter stats for ’./dijk-release -in graphs/bench-8191-init.txt -o logs/prof/out.txt’:

44,904,780 cache-references

19,980,102 cache-misses # 44.494 % of all cache refs

0.915987465 seconds time elapsed

0.801012000 seconds user

0.112141000 seconds sys
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C.2. Parallel Dijkstra with MDList Priority Queue

jtluo@ghc48:7/618Project$ OMP_NUM_THREADS=4 perf stat ./pardijkMdlist \
-in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt

total time: 0.043833s

Performance counter stats for ’./pardijkMdlist —-in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt’

960.71 msec task-clock # 1.151 CPUs utilized
42 context-switches # 43.718 /sec
0 cpu-migrations # 0.000 /sec
134,352 page—-faults # 139.847 K/sec
4,406,037,456 cycles # 4.586 GHz
9,603,341,725 instructions # 2.18 insn per cycle
1,938,623,691 branches # 2.018 G/sec
6,704,793 branch-misses # 0.35% of all branches

0.834623575 seconds time elapsed

0.800543000 seconds user
0.160108000 seconds sys

jtluo@ghc48:7/618Project$ OMP_NUM_THREADS=4 perf stat —-e cache-references,cache-misses ./pardijkMdlist °

-in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt

total time: 0.034470s

Performance counter stats for ’./pardijkMdlist —-in graphs/bench-8191-init.txt -o logs/prof/mdlist.txt’

74,560,394 cache-references

28,549,722 cache-misses # 38.291 % of all cache refs

0.813469502 seconds time elapsed

0.797792000 seconds user

0.148333000 seconds sys
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D. VTune results
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Figure 19. The VTune result without Allocator
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Figure 20. The VTune result with Allocator
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