
Lock-Free Priority Queue Based on
Multi-Dimensional Linked Lists

Juntao Luo Yumin Chen

URL: https://juntaoluo.github.io/618-Project/Index

Schedule
Here is our updated schedule for this project. Note that past tasks were more general since they
were completed before this report. Future tasks are more specific.

Week Task Assignee

Nov. 7 - Nov. 13 Finish project proposal and study
related research paper thoroughly

Completed, Jun Tao Luo and
Yumin Chen

Nov. 14 - Nov.
20

Build Data Structures, including Node,
Stack, AdoptDesc and PriorityQueue

Completed, Yumin Chen

Nov. 14 - Nov.
20

Implement the coarse-grained
concurrent priority queue

Completed, Jun Tao Luo

Nov. 21 - Nov.
27

Implement concurrent DELETEMIN,
including Logical deletion and batch
physical deletion

Completed, Yumin Chen

Nov. 21 - Nov.
27

Implement benchmark scripts and
reference algorithm (parallel Dijkstra’s)
using concurrent priority queues.

Completed, Jun Tao Luo

Nov. 21 - Nov.
27

Start to work on project milestone
report

Completed, Jun Tao Luo and
Yumin Chen

Nov 30 Finish the project milestone report Completed, Jun Tao Luo and
Yumin Chen

Dec 2 Implement concurrent INSERT In Progress, Jun Tao Luo

Dec 2 Test and debug correctness of the
MDList priority queue

In Progress, Yumin Chen

Dec. 6 Profile the MDList priority queue, and
analyze performance

Pending, Yumin Chen

Dec. 6 Create graphs showing performance
statistics and make comparisons with
other mature lock-free concurrent
priority-queue if applicable

Pending, Jun Tao Luo

Dec. 9 Final project report draft Pending, Jun Tao Luo

Dec. 9 Final project poster draft Pending, Yumin Chen

Dec. 9 Evaluate feasibility of HOPE TO
ACHIEVE tasks

Pending, Jun Tao Luo and Yumin
Chen

Dec.13 Complete final project report Pending, Jun Tao Luo

Dec. 13 Complete HOPE TO ACHIEVE tasks Pending, Jun Tao Luo and Yumin
Chen

Dec. 17 Complete the final poster Pending, Yumin Chen

Summary
We changed the order of some of the tasks outlined in our original proposal, but the planned
items are mostly unchanged.

In addition to using only microbenchmarks as a method to evaluate our data structure in our
proposal, we decided to add a reference algorithm as a more realistic benchmark. For this
purpose we have implemented a parallelized Dijkstra’s algorithm that uses a concurrent priority
queue [1]. This has a further benefit of allowing us to empirically confirm the correctness of the
concurrent priority queue by comparing the results of the parallelized algorithm with the
sequential algorithm.

We have completed our testing harness which includes scripts to generate input graphs for
parallelized Dijkstra’s algorithm, test the correctness of the output and compute the performance
of the parallelized algorithm using different implementations of concurrent priority queues
against the sequential algorithm and each other. We have put off writing specific
microbenchmarks since we believe it will be simple but potentially dependent on the exact APIs
of each of our priority queue implementations so we’ll work on this once we complete our priority
queue implementations.

For the implementation of MDList based lock free concurrent priority queue, we have
implemented the data structures it uses, the DeleteMin algorithm and are currently working on
Insert. We are also in the process of debugging our current implementation and have not yet
tested the functionality end to end using our parallelized Dijkstra’s algorithm.

Goals and Deliverables
Our objectives are similar to the ones stated in the proposal with a minor change with respect to
coarse-grained and fine-grained concurrent priority queues. We found that the fine-grained
concurrent priority queue to be similar in complexity to the MDList based lock free concurrent
priority queue so we decided to use a coarse-grained concurrent priority queue instead as our
baseline in order to maximize the time we have for implementing our lock free data structure.
Instead we’ll implement a fine-grained concurrent priority queue for further comparison if we
have additional time.

Here’s our updated goals:

● PLAN TO ACHIEVE
○ Implement a coarse-grained concurrent priority queue
○ Implement a concurrent lock-free priority queue based on multi-dimensional

linked lists in C++, which theoretically can achieve an average of 50% speedup
over other versions of priority queue[1].

○ Implement a benchmarking script to evaluate the performance of the concurrent
lock-free priority queue and come up with an analysis report regarding the
influence of both the dimensions and number of threads on the throughput

● HOPE TO ACHIEVE
○ Compare the performance of different versions of concurrent priority queue(e.g.

TBBPQ and LJPQ) with the MDList priority queue
○ Improve the concurrent lock-free priority queue based on profiling statistics, such

as memory access and cache management using concepts learned in the course
○ Implement a fine-grained concurrent priority queue

Poster Session

Our plan for our poster session remains mostly the same as the proposal with the exception of
using a coarse-grained concurrent queue instead of fine-grained concurrent queue:

● Graphs displaying the comparison of the performance of coarse-grained concurrent
priority_queue and the MDList lock-free concurrent priority_queue across different
threads, and different INSERT / DELETEMIN ratios.

● Graphs displaying the lock-free concurrent priority queue’s performance across different
workload ratios (e.g. 50% of INSERT, 75% of INSERT), different number of threads and
different INSERT / DELETEMIN ratios.

● The comparison of existing skip list lock-free concurrent priority queue and MDList
lock-free concurrent priority queue across different number of threads and different
INSERT / DELETEMIN ratios, if time we complete these objectives.

Preliminary Results
We measured the speed up for coarse-grained concurrent priority queue compared to the
sequential implementation of priority queue of std::priority_queue for the Dijkstra’s benchmark:

-- Performance Table ---
Scene Name | 4 | 8

bench-64 | 0.000247 | 0.000989
bench-256 | 0.0003 | 0.000503
bench-1024 | 0.002944 | 0.00348
bench-4096 | 0.032007 | 0.032112
bench-8192 | 0.12489 | 0.11085

-- Speedup Table ---
Scene Name | 4 | 8

bench-64 | 0.068826 | 0.017189
bench-256 | 0.946667 | 0.564612
bench-1024 | 1.756454 | 1.485920
bench-4096 | 3.089168 | 3.079067
bench-8192 | 3.310625 | 3.729941

Concerns and Unknowns
Our current progress is mostly on track and we will likely achieve our planned goals on time.
However, we did encounter some surprises that made us adjust our plans slightly from the initial
proposal. As mentioned previously we changed our baseline concurrent priority queue
benchmark from fine-grained to coarse-grained.

We also found that there are few state of the art parallel algorithms that use concurrent priority
queues. For example, while we used a parallelized Dijkstra’s algorithm that’s described in [1],
we found that current best performing single source shortest paths algorithms avoid using
concurrent priority queues [2]. Although this does not invalidate our usage of parallelized
Dijkstra’s as a more realistic benchmark to evaluate performance over synthetic
microbenchmarks, it is unfortunate it is not representative of current state of the art algorithms.

References
[1] Tamir, O., Morrison, A., & Rinetzky, N. (2016). A heap-based concurrent priority queue with
mutable priorities for faster parallel algorithms. In 19th International Conference on Principles of
Distributed Systems (OPODIS 2015).
[2] S. Srinivasan, S. Riazi, B. Norris, S. K. Das and S. Bhowmick, "A Shared-Memory Parallel
Algorithm for Updating Single-Source Shortest Paths in Large Dynamic Networks," 2018 IEEE
25th International Conference on High Performance Computing (HiPC), 2018, pp. 245-254, doi:
10.1109/HiPC.2018.00035.

