Lock-Free Priority Queue Based on
Multi-Dimensional Linked Lists

Juntao Luo Yumin Chen

SUMMARY

We are going to investigate the performance of a concurrent lock-free priority queue based on
multi-dimensional linked lists, which guarantees the worst-case sequential search time of
O(logN) .

URL

https://juntaoluo.github.io/618-Project/Proposal

BACKGROUND

Scalable concurrent priority queues, which are pivotal to topics such as the realization of
parallelizing search algorithms, priority task scheduling and discrete event simulation, has been
a research topic for many years. INSERT and DELELETEMIN are two canonical operations of a
priority queue. In sequential execution scenarios, priority queues can be implemented on top of
balanced search trees or array-based binary heaps. However, these two implementations both
encounter bottlenecks in concurrent situations for maintaining a consistent global data structure.
Recently, researchers attempted to solve this problem by applying skiplists and attained a great
breakthrough. The skiplist solution organized several linked lists into different levels to eliminate
the need of rebalancing and at the same time separate the memory use within different parts of
the structure, which allows concurrent access to the data structure. However, the solution is still
deficient in some regards. Both of the operations are restricted by the dependency of data within
the structure and limits the overall throughput.

As a performance baseline, we will implement a fine-grained priority queue[2]. Inspired by the
ideas of [1], we will investigate the performance of a concurrent lock-free priority queue based
on MDList that guarantees a worst-case search time of O(logN). Based on MDList, we are going
to implement the concurrent insertion with two steps: node splicing and child adoption[Figure 1],
which only updates at most two consecutive nodes. For the deleteMin operation, we will apply
both logical and physical deletion while maintaining a deletion stack to provide the operation the
information about the position of the next smallest node to reduce node traversal[Figure 2].
Finally, we will analyze the performance of the MDList concurrent lock-free priority queue given
variations in parameters such as the number of threads and the number of dimensions of the
linked list using various traffic loads. Finally we will benchmark the performance against some

well-established concurrent lock-free priority queue implementation, if applicable, such as
TBBPQ by intel and LJPQ by Herlihy and Shavit[3] on NUMA systems.

—~—2 T~ Aul /670.3)
(. /@.ZT\ R /6;'0,23
Jonl] 1,03) Az) ﬁ.'o,n

N\

1l‘(0.0._(_ﬂ)_ b (1,0.2) Ml (2,0,1) M
i S 3
: Vo v v
(0,1,0) (1,1,2) (2,1,0) (3,,0)

0,3,0) (33,0

Figure 1: Insert operation in a 3DList

A,z) /é,'u,a) / ’ /
(0,0,3) 3,0,3)
/.6\"“’2) § /6"'0'2' /6.'0,2)’ /@.zl
node[0]->(1,0,2) ’ 7 o
node(1]->(1,1,2) /{D‘” /‘."'"'3' /;D'” /(,:*"D‘l) “’/ﬁ;,n’ A.ll’ hd A),n A,l)
RSB 10,0,0) (1,02) (2,0,1) (30,00 . i (2.00) 3,00)
Deletion Stack s p 1 .
Jewal| | S | [[
\/ (0,1,0) (1,1,2) (2,1,0) (3,1,00 L1, | (2,1,0) 3,1,0)
node[0]->(1,0,2) { l l l ﬁm] ﬁ [[ﬁm
node[1]-> (1,2,1) 7
deizl> 12.1) | @2 @220 3:20) /é' 332) 95 121 220 3:20) /{ -
node[2]-> (1,2, (e

Deletion Stack s { %,’3,1] l /é,’l,l) L V4 "'“" [/6;’1J

(0,3,0) (3,3,0)
(03,0 Next Unmarked Node (3.0

Figure 2a: Logical Deletion Figure 2b: Physical Deletion

THE CHALLENGE

e Firstly, to decouple different parts of the priority queue to make parallelism possible, we
need to maintain a complicated MDList structure and establish a delicate mechanism for
the INSERT and DELETE operations. The efforts include conducting lazy modification,
preserving multiple flags to indicate the current status of the nodes and building extra
data structures, such as stacks, to reduce duplicative traversal over the nodes.

e For the correctness and performance evaluation part, we need to develop a
benchmarking script and even implement our own version of sequential and skiplist

priority queue to compare the operation efficiency of INSERT and DELETEMIN
operations for different versions of priority queue.

e There is also tuning work involved. The overall performance of the priority queue is
highly related to the number of dimensions we chose and the number of threads. We
need to explore as much as possible to find the relationship between these two
parameters.

e We would like to use the concepts we learned in lecture to see if we can identify
additional improvements in the MDList implementation of priority queue.

RESOURCES

For the code base, we will build the data structure from scratch with the help of pseudo code
provided in [1]. For parallel machine resources, we plan to gather performance data on the PSC
Bridges-2 RM.

GOALS AND DELIVERABLES

e PLAN TO ACHIEVE

o Implement a fine-grained concurrent priority queue

o Implement a concurrent lock-free priority queue based on multi-dimensional
linked lists in C++, which theoretically can achieve an average of 50% speedup
over other versions of priority queue[1].

o Implement a benchmarking script to evaluate the performance of the concurrent
lock-free priority queue and come up with an analysis report regarding the
influence of both the dimensions and number of threads on the throughput

e HOPE TO ACHIEVE

o Compare the performance of different versions of concurrent priority queue(e.g.
TBBPQ and LJPQ) with the MDList priority queue

o Improve the concurrent lock-free priority queue based on profiling statistics, such
as memory access and cache management using concepts learned in the course

e Demo plan to show at poster session

o Graphs displaying the comparison of the performance of fine-grained concurrent
priority_queue and the MDList lock-free concurrent priority _queue across
different threads, and different INSERT / DELETEMIN ratios.

o Graphs displaying the lock-free concurrent priority queue’s performance across
different workload ratio(e.g. 50% of INSERT, 75% of INSERT), different number
of threads and different number of dimensions

o The comparison of skiplist lock-free concurrent priority queue and MDList
lock-free concurrent priority queue across different number of threads

PLATFORM CHOICE

We will implement the priority_queue in C++ and develop the benchmark scripts in Python.
Experiments will be conducted on PSC machines because it can easily scale from 1 core to 256
cores allowing for more comprehensive study into the performance of the data structure when
scaling to larger systems. We also chose this platform due to our familiarity and the reliability of
performance statistics since we can guarantee exclusive access to a node for benchmarking.

SCHEDULE

Week Task
Nov. 7 - Nov. 13 Finish project proposal and study related research paper
thoroughly
Nov. 14 - Nov. 20 Implement the fine-grained concurrent priority queue, build
Data Structures, including Node, Stack, AdoptDesc and
PriorityQueue
Nov. 21 - Nov. 27 Implement concurrent INSERT and start to work on project

milestone report

Nov. 28 - Dec. 4 Implement concurrent DELETEMIN, including Logical deletion
and batch physical deletion,test correctness of the MDList
priority queue and finish the project milestone report

Dec. 5-Dec. 11 Profile the MDList priority queue, conduct experiments, create
graphs showing performance statistics and make
comparisons with other mature lock-free concurrent
priority-queue if applicable

Dec.11 - Dec.18 Finish up the project and finish the final report

Reference

[1] Zhang, D., & Decheyv, D. (2016). A lock-free priority queue design based on
multi-dimensional linked lists. IEEE Transactions on Parallel and Distributed Systems, 27(3),
613—626. https://doi.org/10.1109/tpds.2015.2419651

[2] Hunt, G. C., Michael, M. M., Parthasarathy, S., & Scott, M. L. (1996). An efficient algorithm
for concurrent priority queue heaps. Information Processing Letters, 60(3), 151-157.
https://doi.org/10.1016/s0020-0190(96)00148-2

[3] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming, Revised Reprint.
Amsterdam, The Netherlands: Elsevier, 2012.

https://doi.org/10.1109/tpds.2015.2419651

